
Foundations of
Artificial Intelligence

Alberto Maria Metelli

Exercise Session
10-15-2021

Registrations of the Exercise Sessions on WeBeep

Registration Links also available at

https://albertometelli.github.io/teaching/2021-teaching-fai

https://albertometelli.github.io/teaching/2021-teaching-fai

Exercise 2.2

Suppose you are trying to solve the following puzzle. The puzzle involves numbers from
100 to 999. You are given two numbers called S and G. You are also given a set of
numbers called bad. A move consists of transforming one number into another by
adding 1 to one of its digits or subtracting 1 from one of its digits; for instance, a
move can take you from 678 to 679; or from 234 to 134. Moves are subject to the
following constraints:

● You cannot add to the digit 9 or subtract from the digit 0. That is to say, no
“carries” are allowed and the digits must remain in the range from 0 to 9.

● You cannot make a move which transforms your current number into one of
the numbers in the set bad.

● You cannot change the same digit twice in two successive moves.

Exercise 2.2

Since the numbers have only 3 digits, there are at most 6 possible moves at the start. And since
all moves except the first are preceded by another move which uses one of the digits, after the
start there are at most 4 possible moves per turn. You solve the puzzle by getting from S to G in
the fewest possible moves. Your task is to use A* search to find a solution to the puzzle.

1. Briefly list the information needed in the state description in order to apply A* to this
problem.

2. Find a heuristic for use with A* search in this problem which is admissible and which does
not require extensive mathematical calculation. Explain clearly why your heuristic is
admissible.

3. Use your heuristic to carry out an A* search to find a solution when S = 567, G = 777, and
bad = [666; 667]. For nodes that tie for best-node-to-expand, choose the node with higher
path cost.

Solution Proposal - Modelization

State: (xyz,l) – xyz are the three digits and l ∈ {1,2,3,-} is the last modified digit

Actions: (d,o) - d ∈ {1,2,3} is the digit to be modified, o ∈ {+,-} is the performed
operation

Initial state: (567, -)

Goal test: (777,l) with l ∈ {1,2,3,-}

Step cost: 1

Solution Proposal - Heuristic

Idea: sum of absolute differences between the digits of the current state and those
of the goal state

If G=(xgygzg,l) is a goal state:

h(xyz,l) = |x - xg| + |y - yg| + |z - zg|

Is h admissible?

Solution Proposal - Heuristic

Idea: sum of absolute differences between the digits of the current state and those
of the goal state

If G=(xgygzg,l) is a goal state:

h(xyz,l) = |x - xg| + |y - yg| + |z - zg|

Is h admissible?

Yes! Because it underestimates the number of moves to reach a goal state.

Is h consistent?

Solution Proposal - Heuristic

Idea: sum of absolute differences between the digits of the current state and those
of the goal state

If G=(xgygzg,l) is a goal state:

h(xyz,l) = |x - xg| + |y - yg| + |z - zg|

Is h admissible?

Yes! Because it underestimates the number of moves to reach a goal state.

Is h consistent? Try at home!

A*

Elimination of Repeated States

Tie breaking favoring the node with highest path cost

Initial state: (567,-)

Goal states: (777,l) with l ∈ {1,2,3,-}

Bad states: {666,667}

bat state!

f = g + h
evaluation function path cost heuristic function

bat state!

Tie breaking favoring the node with highest path cost

Exercise 3.3

Consider the following two-player zero-sum game. The game begins with a pile of
seven bricks. On your move, you must split one pile of bricks into two piles. You may
not split a pile of bricks into two equal piles. If it is your turn and all the piles of bricks
have either one or two bricks, you have lost the game.
1. Formalize the problem
2. Apply the minimax algorithm for finding the best action for the max player at the

root.
3. Apply the minimax algorithm with alpha-beta pruning for finding the best action for

the max player at the root.

