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Consider the following sequential decision making-problem. An agent in a 3 x 3 grid can move in the four
directions or stay still, provided that it does not crush against a border. Whenever performing a valid action,
the agent reaches deterministically to the corresponding cell. The interaction starts in the lower left cell
(blue) and the upper right cell (green) is a terminal state. The immediate reward is represented in the following
grid:

0 0 2
-1 —10 0
0 -1 0

1. Formalize the problem as a Markov decision process (MDP);

2. For which values of the discount factor v € [0,1] the optimal policy consists in staying in the initial state
forever?

3. Simulate the execution of Q-learning, starting with a Q-table initialized with the immediate reward,
supposing to have observed the following trajectories:

(0,0) = (1,0) 5 (1,1) = (2,1) 5 (2,2)
(2.1) & (2,0) 5 (2,1)
(1.1) 5 (1, >ﬁ<2o>
(0,0) = (1,0) 5 (1,1)

Use discount factor v = 0.9 and learning rate o = 1.

4. Say which is the greedy policy once completed the updates of the Q-table.

Formalization We numerate rows and columns from 0 starting from the lower left cell.
A= {(Ai,Af) : Ai,Aj € {—1,0,+1} A JAi|+|Aj| <1}
= {(_15 0)7 (07 +1)7 (07 _1)7 (07 +1)7 (Ov O)}

An action (Ai, Aj) is admissible in a state (i,7) if i + Ai, 5 + Aj € {0,1,2}. In such a case, the next state is
given by:

P, 36, 9), (Ad, A)) = L{(@', ') = (i + A, j + Aj)}

The initial state distribution is deterministic on (0,0), i.e, po((4,7)) = 1{(¢,7) = (0,0)}. The reward function
is a function of the state only and is defined as represented in the grid.



Optimal Policy varying v It is not hard to prove that this problem, depending on the value of 7 can admit
two possible optimal policies: either staying still in the initial state or moving to the terminal state, with the
minimum number of steps, avoiding passing through the —10 cell (two possible paths, leading to the same
reward are possible). Let us compute the value function of these two policies:

ven((0,0)) =0,
VT ((0,0)) = 047+ (1) +72-0+7° -2 = =y +29°.

Requiring that V7™=i1((0,0)) > V7 ((0,0)) leads to v < \/Li

Q-learning Simulation In gray, the Q-table cells of the actions that are not allowed.

V(s) =
r(s) max,ea Q(s,a)

(0,0) 0 0, 0.4122[°
(0,1) —1 —1
(0,2) 0 0
(1,0) —1 —1, 0.458(8
(1,1) —10 —10
(1,2) 0 0
(2,0) 0 0, 1.62[¢
(2,1) 0 0, 1.8
(2,2) 2 2

We apply the update rule for each transition in order:

Qo) (1= Q5. + a (1(6,0) + 1 max QL' 0)

1] (0,0) = (1,0) = Q((0,0),(+1,0)) ¢ r((0,0)) +ymaxQ((1,0).a) = 0+0.9- (~1) = ~0.9
2] (L0 5 (L) = Q((1,0),(0,41)) = r((1,0)) + ymaxQ((1,1),a) = ~1+ 0.9 (~10) = ~10
B (LD (21) = Q(1,1),(+1,0) « r((1,) + ymaxQ((2,1),a) = =10+ 0.9-0 = ~10
4 21) =22 = Q(2.1),0,+1) =r((2,1) + ymaxQ((2,2),0) =0+09-2 =18

5] (2,1) 5 (2,0) = Q((2.1),(0.~1)) =((2,1)) + ymax Q((2,0),a) = 0+0.9-0 =0

6] (2,05 @21 = Q2.0).(0.4+1)) = r((2,0)) + ymax Q((2,1),a) = 0+0.9- L8 = 1.62

7 (L1 5 (1L,0) = Q((1,1),(0,~1)) = r((1,1)) + ymaxQ((1,0),a) = ~10+ 0.9+ (~1) = ~10.9
8 (1,0) = (2,00 = Q((1,0),(+1,0)) =r((1,0) + ymaxQ((2,0),a) = ~1 409 1.62 = 0.458
9] (0,0) = (1,0) = Q((0,0),(+1,0)) =7((0,0)) + ymax Q((1,0),a) = 0+ 0.9- 0.458 = 0.4122

[10] (1,0) 5 (1,1) = Q((1,0),(0,+1)) =r((1,0)) +71;1€aj<Q((1, 1),a) =—=140.9-(-10) = —-10

Greedy Policy The greedy policy is represented in the following:

all all
all except
all (11 0;’ (0,+1)
(+1,0) (+1,0) (0,+1)




