Exercise on Reinforcement Learning

Alberto Maria Metelli

October 21, 2021

Consider the following sequential decision making-problem. An agent in a 3×3 grid can move in the four directions or stay still, provided that it does not crush against a border. Whenever performing a valid action, the agent reaches **deterministically** to the corresponding cell. The interaction starts in the lower left cell (blue) and the upper right cell (green) is a terminal state. The immediate reward is represented in the following grid:

0	0	2
-1	-10	0
0	-1	0

- 1. Formalize the problem as a Markov decision process (MDP);
- 2. For which values of the discount factor $\gamma \in [0, 1]$ the optimal policy consists in staying in the initial state forever?
- 3. Simulate the execution of Q-learning, starting with a Q-table initialized with the immediate reward, supposing to have observed the following trajectories:

$$\begin{array}{l} (0,0) \xrightarrow{\rightarrow} (1,0) \xrightarrow{\uparrow} (1,1) \xrightarrow{\rightarrow} (2,1) \xrightarrow{\uparrow} (2,2) \\ (2,1) \xrightarrow{\downarrow} (2,0) \xrightarrow{\uparrow} (2,1) \\ (1,1) \xrightarrow{\downarrow} (1,0) \xrightarrow{\rightarrow} (2,0) \\ (0,0) \xrightarrow{\rightarrow} (1,0) \xrightarrow{\uparrow} (1,1) \end{array}$$

Use discount factor $\gamma = 0.9$ and learning rate $\alpha = 1$.

4. Say which is the greedy policy once completed the updates of the Q-table.

Formalization We numerate rows and columns from 0 starting from the lower left cell.

$$\mathcal{S} = \{(i, j) : i, j \in \{0, 1, 2\}\},\$$

$$\begin{aligned} \mathcal{A} &= \{ (\Delta i, \Delta j) \, : \, \Delta i, \Delta j \in \{-1, 0, +1\} \land |\Delta i| + |\Delta j| \le 1 \} \\ &= \{ (-1, 0), (0, +1), (0, -1), (0, +1), (0, 0) \}. \end{aligned}$$

An action $(\Delta i, \Delta j)$ is admissible in a state (i, j) if $i + \Delta i, j + \Delta j \in \{0, 1, 2\}$. In such a case, the next state is given by:

$$\mathcal{P}((i',j')|(i,j),(\Delta i,\Delta j)) = \mathbb{1}\{(i',j') = (i + \Delta i, j + \Delta j)\}$$

The initial state distribution is deterministic on (0,0), i.e., $\mu_0((i,j)) = \mathbb{1}\{(i,j) = (0,0)\}$. The reward function is a function of the state only and is defined as represented in the grid.

Optimal Policy varying γ It is not hard to prove that this problem, depending on the value of γ can admit two possible optimal policies: either staying still in the initial state or moving to the terminal state, with the minimum number of steps, avoiding passing through the -10 cell (two possible paths, leading to the same reward are possible). Let us compute the value function of these two policies:

$$V^{\pi_{\text{still}}}((0,0)) = 0,$$

$$V^{\pi_{\text{go}}}((0,0)) = 0 + \gamma \cdot (-1) + \gamma^2 \cdot 0 + \gamma^3 \cdot 2 = -\gamma + 2\gamma^3.$$

Requiring that $V^{\pi_{\text{still}}}((0,0)) > V^{\pi_{\text{go}}}((0,0))$ leads to $\gamma < \frac{1}{\sqrt{2}}$.

Q-learning Simulation In gray, the Q-table cells of the actions that are not allowed.

	m(a)		Q(s,a)		V(s) =		
	r(s)	(-1,0)	(+1, 0)	(0, -1)	(0, +1)	(0,0)	$\max_{a \in \mathcal{A}} Q(s, a)$
(0, 0)	0		$0, -0.9^{[1]}, 0.4122^{[9]}$		0	0	0, 0.4122 ^[9]
(0,1)	-1		-1	-1	-1	-1	-1
(0,2)	0		0	0		0	0
(1, 0)	-1	-1	$-1, \\ \mathbf{0.458^{[8]}}$		$-1, -10^{[2]}, -10^{[10]}$	-1	$-1, \mathbf{0.458^{[8]}}$
(1, 1)	-10	-10	$-10, \ -10^{[3]}, \ -10.9^{[7]}$	-10	-10	-10	-10
(1,2)	0	0	0	0		0	0
(2,0)	0	0			0, 1.62 ^[6]	0	0, 1.62 ^[6]
(2,1)	0	0		0, 0 ^[5]	$0, \mathbf{1.8^{[4]}}$	0	0, 1.8^[4]
(2,2)	2						2

We apply the update rule for each transition in order:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left(r(s,a) + \gamma \max_{a' \in \mathcal{A}} Q(s',a') \right)$$

Greedy Policy The greedy policy is represented in the following:

all	all	
all	all except $(+1,0)$	(0, +1)
(+1, 0)	(+1, 0)	(0, +1)