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Abstract

Inverse Reinforcement Learning (IRL) tech-
niques deal with the problem of deducing a
reward function that explains the behavior of
an expert agent who is assumed to act opti-
mally in an underlying unknown task. In sev-
eral problems of interest, however, it is pos-
sible to observe the behavior of multiple ex-
perts with different degree of optimality (e.g.,
racing drivers whose skills ranges from ama-
teurs to professionals). For this reason, in
this work, we extend the IRL formulation to
problems where, in addition to demonstra-
tions from the optimal agent, we can observe
the behavior of multiple sub-optimal experts.
Given this problem, we first study the theo-
retical properties of the class of reward func-
tions that are compatible with a given set of
experts, i.e., the feasible reward set. Our re-
sults show that the presence of multiple sub-
optimal experts can significantly shrink the
set of compatible rewards. Furthermore, we
study the statistical complexity of estimat-
ing the feasible reward set with a generative
model. To this end, we analyze a uniform
sampling algorithm that results in being min-
imax optimal whenever the sub-optimal ex-
perts’ performance level is sufficiently close
to the one of the optimal agent.

1 INTRODUCTION

Inverse Reinforcement Learning (IRL, Ng et al., 2000)
deals with the problem of recovering a reward function
that explains the behavior of an expert agent who is
assumed to act optimally in an underlying unknown
task. Over the years, the IRL problem has consistently
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captured the attention of the research community (see,
for instance, Arora and Doshi (2021) and Adams et al.
(2022) for in-depth surveys). Indeed, this general sce-
nario, where the reward function needs to be learned,
emerges in numerous real-world applications. A prime
example of this arises from human-in-the-loop settings
(Mosqueira-Rey et al., 2023), where the expert is a hu-
man solving a task, and an explicit specification of the
human’s goal in the form of a reward function is often
unavailable. Notably, humans encounter difficulty in
expressing their intentions in the form of an underly-
ing reward signal, preferring instead to demonstrate
what they perceive as the correct behavior. Once we
retrieve a reward function, (i) we obtain explicit in-
formation for understanding the expert’s choices, and,
furthermore, (ii) we can utilize it to train reinforce-
ment learning agents, even under shifts in the features
of the underlying system.

Since the seminal work of Ng et al. (2000), IRL has
emerged as a significantly complex task. Indeed, one
of its primary challenges lies in the intrinsic ill-posed
nature of the problem, as multiple reward functions
that are compatible with the expert’s behavior exist.
Recently, a promising avenue of research (Metelli et al.,
2021; Lindner et al., 2022; Metelli et al., 2023) has
tackled this ambiguity issue from an intriguing per-
spective. Specifically, this strand of works focuses on
estimating all the reward functions that are compati-
ble with the observed demonstration, thereby postpon-
ing the selection of the reward function and directing
their focus solely on the expert’s intentions.

Nevertheless, these approaches fall short in modeling
more complex situations that arise in the real world.
Indeed, in several problems of interest, it is possible
to observe the behavior of multiple agents with differ-
ent degrees of expertise. As an illustrative example,
we can consider the human-in-the-loop settings men-
tioned above. Imagine, indeed, that we are interested
in recovering reward functions that explain the intent
behind racing drivers. In this scenario, racing car com-
panies typically have access to a variety of drivers with
diverse skills, including professionals, test drivers, and
emerging talents from developmental programs. In
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this context, while the focus is typically on the reward
function of professional drivers, we expect a proficient
IRL method to effectively leverage demonstrations and
information provided by drivers with lower expertise.
Indeed, from an intuitive perspective, if we have infor-
mation on the degree of expertise of other drivers, we
can expect that, by exploiting their demonstrations,
we can reduce the inherent ambiguity of IRL prob-
lems. For this reason, in this work, we extend the IRL
formulation to settings where, in addition to demon-
strations from an optimal agent, we can observe the
behavior of multiple sub-optimal experts, of which we
know an index of their sub-optimality.

More specifically, we will be primarily focused in an-
swering the following theoretical questions:

(Q1) How does the presence of sub-optimal experts af-
fects the class of reward functions that are com-
patible with the observed behavior? Can they
limit the intrinsic ambiguity that affects IRL
problems?

(Q2) What is the statistical complexity of estimating
the set of reward functions that are compatible
with a given set of experts? How does it compare
against the one of single-experts IRL problems?

Contributions and Outline After providing the
necessary notation and background, we introduce the
novel problem of Inverse Reinforcement Learning with
multiple and sub-optimal experts (Section 2). We then
proceed by studying the theoretical properties of the
class of reward functions that are compatible with a
given set of experts under the assumption that an up-
per bound on the performance between a sub-optimal
agent and the optimal expert is available to the de-
signer of the IRL system (Section 3). More precisely,
our findings indicate that having multiple sub-optimal
experts can significantly shrink the set of compatible
rewards, thereby limiting the ambiguity issue that af-
fects the IRL problem. Leveraging our previous re-
sults, we continue by studying the statistical com-
plexity of estimating the feasible reward set with a
generative model (Section 4). To this end, after for-
mally introducing a Probabilistic Approximately Cor-
rect (PAC, Even-Dar et al., 2002) framework, we de-
rive a novel lower bound on the number of samples that
are required to obtain an accurate estimate of the fea-
sible reward set. Then, we present a uniform sampling
algorithm and analyze its theoretical guarantees. Our
results show that (i) the IRL problem with sub-optimal
experts is statistically harder than the single agent IRL
setting, and (ii) that the uniform sampling algorithm
is minimax optimal whenever the sub-optimal experts’
performance level is sufficiently close to the one of the

optimal agent. Finally, we conclude with a discussion
on existing works (Section 5) and by highlighting po-
tential avenues for future research (Section 6).

2 PRELIMINARIES

In this section, we provide the notation and essential
concepts employed throughout this document.

Notation Consider a finite set X', we denote with
A% the set of probability measures over X. Let ) be
a set, we denote with Agg the set of functions f: )Y —
A%, Given f € R", we denote with || f||o the infinite
norm of f. Let X and X’ be two non-empty subsets of
a metric space (), d), we define the Hausdorff distance
(Rockafellar and Wets, 2009) between X and X" as:

Hy(X,X') = max {:1612 T}gﬁ(, d(;z;f%;zE, xneléf\f' d(xw’)} .

Notice that the Hausdorff distance is directly depen-
dent on the metric d. Finally, given an integer x &€
N- ¢, we denote with 1, the z-dimensional vector given

by (1,...,1)"

Markov Decision Processes A Markov Decision
Process without a reward function (MDP\R) is de-
fined as a tuple M = (S, A,p,7), where S is the set
of states, A is the set of actions, p € Ang denotes
the transition probability kernel, and v € [0, 1) is the
discount factor. In this paper, we consider finite state
and action spaces, namely |S| = S and |A] = A. A
Markov Decision Process (MDP, Puterman, 2014) is
obtained by combining an MDP\R M with a reward
function 7 € RS*A. Without loss of generality, we
assume reward functions bounded in [0,1]. We de-
note with M U r the resulting MDP. The behavior of
an agent is described by a policy 7 € Aé, that, for
each state, prescribes a probability distribution over
actions.

Operators Consider f € RS and g € RS*4. We de-
note with P and 7 the operators that are induced by
the transition model p and the policy 7 respectively.
More specifically, Pf(s,a) = > ., csp(s'|s,a)f(s'),
and mg(s) = >_,c47(als)g(s,a). Moreover, we in-
troduce the operators E and B™ defined in the fol-
lowing way: Ef(s,a) = f(s) and (B7g) (s,a) =
1{m(als) =0} g(s,a). Finally, we define d™f as the
expectation of f under the discounted occupancy
measure. More formally d™f = (Is —"/7TP)71 f =

S (mP)f.

Value Functions and Optimality Given an MDP
M U7 and a policy m, the Q-function Q7% (-) repre-
sents the expected discounted sum of rewards collected
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in M U r starting from (s,a) and following policy .
More formally:

—+oo

Z’Y (st,ae)|so = s,a0 =a| ,

t=0

QMUT‘(S CL

where the expectation is taken w.r.t. the stochastic-
ity of the policy and the environment, that is sg11 ~
p(-|st,ar) and ap ~ 7(-|s¢). Similarly, the V-function
V- represents the expectation of the Q-function
over the action space, namely V{, . = 7Q7%,,. The
advantage function A3, . = QN — EVIw, rep-
resents the immediate gain of taking a given action,
rather than following policy 7. A policy 7* is optimal
if it has non—positive advantage in each-state action
pair; namely A%, . < 0 holds element-wise.

Inverse Reinforcement Learning An Inverse Re-
inforcement Learning (IRL, Ng et al., 2000) problem
is defined as a tuple B = (M, 7g), where M is an
MDP\R and 7g € Ag‘ is an expert policy. Given a
reward function 7 € RS*4, we say that r is feasible
for B if it is compatible with the behavior of the ex-
pert, namely 7g is an optimal policy for the MDP
M Ur. We denote with R the set of feasible reward
functions, namely:

Ry = {re0,1]5%4: 477 <0}. (1)

The set Reg takes the name of feasible reward set
(Metelli et al., 2021; Lindner et al., 2022; Metelli et al.,
2023). To characterize the set Ry, Metelli et al. (2021)
have shown that a reward function r belongs to Rp if
and only if there exists ¢ € R‘;X)A and V € RS such
that:

r=—B"¢( + (E —yP)V. (2)

In other words, each reward function in R, is ex-
pressed as a sum of two components. The first one,
—B75(, which is non-zero only when 7z (als) = 0, can
be interpreted as the advantage function A} .. The
second one, (E — vP)V, instead, can be interpreted
as a reward-shaping via function V', which is widely
recognized to maintain the optimality of the expert’s
policy (Ng et al., 2000). Given this interpretation, it
follows that ||[V]|e < (1—7)7 ! and ||¢[|ec < (1—7)7 L.

IRL with Sub-optimal Experts In this work,
we extend the IRL formulation to problems where,
in addition to demonstrations from an optimal ex-
pert, we can observe the behaviors of multiple and
sub-optimal agents. More precisely, we define an In-
verse Reinforcement Learning problem with multiple
and Sub-optimal Experts (IRL-SE) as a tuple B =

(M, TE, (TE,) 1y (fl)"ﬂ) where M is an MDP\R,

7, is the policy of an optimal agent, and (7 g, ), are
a collection of n sub-optimal policies with known de-
gree of sub-optimality & € Rsg.! A reward function
r € RS*A s feasible for 9B if 7, is an optimal policy
for the MDP M U r and, furthermore, if:

holds for all i € {2,...,n+ 1}. In this sense, &; (i.e.,
the degree of sub-optimality of policy 7g,) represents
a known upper bound on the performance between the
optimal expert and the i-th sub-optimal agent. We de-
note by R the set of feasible rewards for 8. More for-
mally, 7 € [0, 1]5%4 belongs to Ry if (i) A}L, < 0and
(ii) Equation (3) holds for all i € {2,...,n+1}. No-
tice that, whenever no sub-optimal expert is present,
we directly recover the definition of the feasible set for
single-agent IRL problems, i.e., Ry in Equation (1).

Vi

Mur

MU’I”

Empirical Estimates Let D; be a dataset of tran-
sitions of ¢ tuples D; = {(sj,aj,s;, (ag- ))?+11)}]:1,
where s ~ p(:|s;,a;), and agi) ~ g, (-|s;). Given Dy,
it is possible to define the empirical transition model
p and the empirical experts’ policy g, as follows:

Ne(s,0:5) 8 N (s q) > 0
p(s'|s,a) = { 1Nt(s,a) i(s,a)

3 otherwise

N(i)(s a) . (4)
7p,(als) = { N if Ni(s) > 0 ,

% otherwise

where Ni(s,a,s’) denotes the number of times in
which (s;,a;,s}) is equal to (s,a,s), Ni(s,a) =
> Ni(s,a,8"), Ni(s) = >, o Ni(s,a, "), and, finally,
Nt( ) (s, a) counts the number of times in which (84, gl))
is equal to (s,a). Given these definitions, we denote
with B, the empirical IRL problem that is induced by
pand {7, )77, We denote with Rg its correspond-
ing feasible reward region.

3 SUB-OPTIMAL EXPERTS AND
THE FEASIBLE REWARD SET

In this section, we lay down the foundations for the
problem of Inverse Reinforcement Learning in the pres-
ence of multiple and sub-optimal experts. Specifi-
cally, given the formulation introduced in Section 2,
we now delve into an in-depth examination of the the-
oretical properties of the feasible reward set Rg. We
will tackle the problem from two different perspectives.

'For the sake of exposition, we consider a single opti-
mal agent. The extension to cases where multiple optimal
policies are available is direct. Futher details on this point
are provided in Appendix A.
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First, we present an implicit formulation of Rg that
will allow us to characterize the properties of the fea-
sible set by means of @ and V function (Section 3.1).
Then, we will present an explicit formulation that will
provide us with a precise mathematical description of
R (Section 3.2). As we shall see, these results in-
dicate that the presence of sub-optimal experts can
significantly shrink the feasible set of compatible re-
wards.

3.1 Implicit Formulation of Rg

As mentioned above, we begin by providing an implicit
description of the feasible reward set Rg. To this end,
we derive the following result (proof in Appendix B).

Lemma 1. Let B be an IRL problem with sub-optimal
experts. Let v € [0,1]5%4. Then, r € Reg if and only
if the following conditions are satisfied:

(i) Qi (s,0) = Vi, (s)
(i) Qgln(s,a) < Vi, (s)

(iii) Vi, < Vi, + 1s&

Y(s,a): g, (als) >0
Y(s,a): g, (als) =0

Vied{2,...,n+1}.

Lemma 1 provides necessary and sufficient conditions
for determining whether a reward function r belongs
to the feasible set Rg. More precisely, condition (i)
and (ii) directly encodes the optimality of policy 7 g,
for M Ur, i.e., the advantage function AWME&JT is non-
positive in each state-action pair. Condition (iii), on
the other hand, arises from the presence of sub-optimal
experts, and it is directly related to Equation (3).

At this point, by closely examining Lemma 1, it is
possible to gain insight into the limitations and advan-
tages associated with the additional presence of mul-
tiple and sub-optimal experts. Consider, indeed, the
following illustrative examples.

Example 1. Suppose that mg, = mg, holds for all ¢ €
{2,...,n+1}. In this case, condition (iii) is clearly
satisfied for any reward function r. It follows that the
feasible reward set Rg is purely determined by the
requirement that the advantage function of 7, is non-
negative, and, as a consequence, the set Rg coincides
with the one of the single-expert IRL problem, namely
Rg = Rs. Analogously, if & > (1 —~)~! holds for
all sub-optimal experts, condition (iii) is vacuous, and,
similarly to the previous case, Rg reduces to Rs3.

Ezample 2. Consider the MDP with 2 states depicted
in Figure 1, and suppose, for the sake of exposition,
that only one additional sub-optimal expert is present.
In this case, the optimal agent and the sub-optimal
agent follows completely different policies in Sy. By
developing the conditions in Lemma 1, it is easy to see
that, in addition to the constraint that r(Sp, 4;) >

All ﬂ'El (Al‘SO):l

|

(2D

AQ‘ TE; (Ag‘So):l

Figure 1: MDP example, with 2 states and 2 experts,
that highlights the benefits of sub-optimal agents (Ex-
ample 2). In Sy both g, and 7g, are identical, i.e.,
7E, (A|S1) = 7E, (A]S1) = 1.

(S0, A2) (i-e., g, is an optimal policy), condition (iii)
introduces a further relationship between r(Sp, A1)
and r(Sp, Aa), that is 7(Sp, A1) — r(Sp, A2) < &. In
this sense, if &; is sufficiently small (i.e., & < 1 in this
case), the presence of the sub-optimal agents can sig-
nificantly reduce Rg compared to Re.

Abstracting away from the previous examples, we can
notice that whenever (a) the sub-optimal agents ex-
hibit significant differences in behavior from the op-
timal expert and (b) their performance level is suffi-
ciently close to being optimal, R4 can notably shrink
compared to Rog. In the next section, through the
explicit formulation of the feasible reward set, we will
analyze this phenomenon quantitatively and in more
detail.

3.2 Explicit Formulation of R

We now continue by providing an explicit formulation
of the feasible set Rg. The following result (proof in
Appendix B) summarizes our findings.

Theorem 3. Let B be an IRL problem with sub-
optimal experts. Let v € [0,1]5*4. Then, r € Ry
if and only if there exists ( € R‘ié““ and V € RS such
that the following conditions are satisfied:

r=-B""(+(E-~yP)V, (5)
and, for alli € {2,...,n+ 1}:

dﬂEiﬂ'EiBﬂ—Elc < 15&. (6)

Theorem 3 deserves some comments. First of all, from
Equation (5), we can see that a necessary condition
for having r € Rg is that it can be expressed as the
sum of two different components, namely -B™ ¢ and
(E —~P)V. This sort of result is a direct consequence
of the fact that 7g, is an optimal policy for MUr, and,
in this sense, it recovers the existing results of single
expert IRL settings Metelli et al. (2021). Indeed, we
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notice that it exactly matches Equation (2), and, con-
sequently, it does not depend at all on the presence of
the sub-optimal experts.? The role of the sub-optimal
agents, on the other hand, is completely expressed by
Equation (6).> More precisely, each additional expert
introduces a set of linear constraints on the values
that ¢ can assume.? We recall that —B™#1( can be
interpreted as the advantage function for the optimal
policy mg, . In this sense, Equation (6) limits how sub-
optimal the values of actions not played by 7g, can be.
Specifically, we notice that the resulting @ function of
the optimal expert 7, , for a given choice of r, can be
expressed as Q;fﬂlﬂ = —B™51( + EV (Metelli et al.,
2021). In this sense, we can appreciate that by limiting
the values of (, we are restricting the sub-optimality
gaps, expressed in terms of () functions, of actions that
the optimal expert does not play. At this point, we
notice that the linear constraints in Equation (6) are
expressed in terms of mp, B™51(. As a consequence,
they will only affect state-action pairs (s,a) that are
played by the sub-optimal experts (i.e., mg, (a|s) > 0)
and that are not played by the optimal agent (i.e.,
7E, (als) = 0). Therefore, as previously highlighted
with the implicit formulation of R, a sub-optimal ex-
pert mg, should behave differently w.r.t. the optimal
agent g, in order to provide meaningful information
and reduce the feasible reward set. Furthermore, the
limitations introduced over ( are directly dependent
on the expected discounted occupancy of 7g,. Given
these considerations, we can appreciate that Equation
(6) has provided a precise mathematical description of
the phenomenon we identified at the end of the previ-
ous section.

As a final remark, we comment on the maximum val-
ues that ¢ can assume. We recall that, for classical
IRL problems, [|¢]|c < (1—7)~!. For the sub-optimal
experts case, instead, let us analyze Equation (6) in
greater detail. Fix a state s’ € S and a sub-optimal
agent i € {2,...,n+ 1}; in this case, the s’-th con-
straint in Equation (6) can be written as:

dodtis) >

s€S a:m g, (als)=0

mg;(als)C(s,a) <&, (7)

where d.,”* (s) denotes the discounted expected num-
ber of times that policy mg, visits state s starting
from state s’. From Equation (7), we can obtain nec-

2We notice that, however, contrary to single-agent IRL
problems, now Equation (5) is only a necessary condition
for having r € Rg.

3We remark that whenever n = 1 (i.e., we have only ac-
cess to the optimal expert 7g, ), Theorem 3 simply reduces
to Equation (5), and, consequently, it smoothly generalizes
existing results for the classical IRL problem.

4As a consequence of the linearity, testing whether a
given ( satisfies Equation (6) is computationally efficient.

essary conditions on the values of ¢ that can gener-
ate compatible reward functions. More specifically,
let X(s,a) C {2,...,n+ 1} be the subset of opti-
mal experts such that mg,(als) > 0. Then, for each
state-action pair (s,a) such that 7g, (a|s) = 0 and
7g, (a|s) > 0, we have that:

¢(s,a) < min {k(s,a), 1i7} =g(s,a), (8)
where k(s, a) is given by:

§i

k(s,a) = min —_—.
i€X(s,a),s’E€S ds, * (S)ﬂ-Ez‘ (CL|S)

(9)

More specifically, the term k(s, a) directly follows from
Equation (7), while (1 — )1 is the maximum value
that any (s, a) can assume, and arises, as in the classi-
cal IRL setting, from the fact that advantage functions
are bounded by (1—+)~! for any possible reward func-
tion. In this sense, as shown in the following example,
Equation (8) implies a significant potential reduction
in the maximum values that the advantage function
can take, i.e., how much sub-optimal, in terms of Q-
function, an action not played by 7z, can be.
Ezxample 4. Consider a IRL problems with only one
additional expert. Suppose that 7g, and g, are
deterministic. ~For all state-action pairs in which
g, (als) = 0 and 7y, (a|s) = 1, Equation (8) implies
that ((s,a) < min {&, (1 —)~*}. If & is significantly
smaller than (1 —+)~!, we obtain a notable restriction
on the set of feasible reward functions.

4 LEARNING THE FEASIBLE SET

So far, we have investigated the theoretical proper-
ties of the class of reward functions that belong to
the feasible set. In this section, we leverage these re-
sults to tackle the statistical complexity of estimating
Rg with a generative model. Specifically, we first in-
troduce a Probabilistic Approximately Correct (PAC)
framework (Section 4.1). Then, we study the statis-
tical complexity of the problem by presenting lower
bounds on the number of samples that any algorithm
requires in order to correctly identify the feasible set
(Section 4.1). Finally, we propose a uniform sampling
algorithm and analyze its theoretical guarantees (Sec-
tion 4.3). As a summary, our results show that (i) the
IRL problem with sub-optimal experts is statistically
more demanding than the single agent IRL setting,
and (ii) that the uniform sampling is minimax optimal
whenever the sub-optimal experts’ performance level
is sufficiently close to the one of the optimal agent.
For the sake of presentation, all results are presented
under the assumption that 7, is deterministic. The
extension to the case in which 7g, is stochastic is pre-
sented in Appendix D.



Manuscript under review by AISTATS 2024

4.1 PAC Framework

We define a learning algorithm for an IRL problem
B as a tuple A = (7,v), 7 is a stopping time that
controls the end of the data acquisition phase, and
v = (Vt);ey 18 a history-dependent sampling strategy
over § x A. More precisely, v; € A%TA, where D; =

t
(S X Ax 8 x (A)"H) . At each time step ¢ € N, the

algorithm selects a state-action pair (S, A;) ~ v4, and
observes a sample S; ~ p(:|St, A¢) from the environ-
ment, together with actions sampled from the experts’

: )" (i)
policy, namely (At ) - ,where A;” ~ 7, (-|S¢). The
observed realizations are then used to update the sam-
pling strategy 1, and the process goes on until the
stopping rule is satisfied. At the end of the data ac-
quisition phase, the algorithm leverages the collected
data to output the estimate of the feasible reward set
R%T that is induced by the resulting empirical IRL

problem B,. Given this formalism, we are interested
in designing learning algorithms that, for any desired
accuracy € € (0,1) and any risk parameter ¢ € (0, 1),
guarantee that:

Py 5 (HOO(R%,R%T) > e) <6 (10)

We refer to these algorithms as (e, §)-correct identifica-
tion strategies. For (e, d)-correct strategies, we define
their sample complexity as the total number of interac-
tion rounds with the generative model before stopping.
In other words, the sample complexity is given by 7.

4.2 Statistical Lower Bound

In this section, we present lower bounds on the num-
ber of queries to the generative model that any (e, d)-
correct algorithm needs to perform in order to cor-
rectly identify the feasible reward set Rg. The follow-
ing theorem (proof in Appendix C) reports our result.
Theorem 5. Let 2 be a (€, §)-correct algorithm for the
IRL problem with sub-optimal experts. There exists
a problem instance B such that the expected sample
complexity is lower bounded by:

v (2 (1)),

where Q(-) hides constant dependencies. Furthermore,
let Tmin be:

me,(als),  (12)

Tmin ‘= min max
i€{2,...n+1} (s,a):7 g, (a|s)>0

and define qy = 7r_;111nmaxi€{27.__7n+1} &. Then there
exists an instance B’ in which qo < 1 such that:

Byl 2 0 (M> BRGEY

2
€°Tmin

Theorem 5 provides two distinct lower bounds (i.e.,
Equations (11) and (13)) for IRL problems with sub-
optimal experts. As a consequence, we notice that
whenever gy < 1 holds, the lower bound for the IRL-
SE setting can be expressed as the maximum between
Equation (11) and (13). At this point, we will com-
ment in-depth on these two equations.

Concerning Equation (11), as our analysis reveals, it
directly arises from the problem of estimating rewards
functions that are compatible with 7g, (i.e., with
Equation (5) in Theorem 3). In this sense, it repre-
sents the complexity of single-agent IRL problems.’
As a precise consequence of the structure of the feasi-
ble region we derived in Theorem 3, this results in a
lower bound also for the multiple sub-optimal experts
setting. Therefore, Equation (11) formally shows that
the sub-optimal expert setting is always at least as
difficult as the single agent IRL problem.

Equation (13), on the other hand, is strongly related
to the presence of sub-optimal experts. More precisely,
under the assumption that gy < 1 (e.g., for sufficiently
small values of &;), it shows a dependency in the lower
bound of a factor W;iln, where m,;, represents the mini-
mum probability with which sub-optimal experts plays
their actions. From an intuitive perspective, its pres-
ence is related to the difficulty in estimating reward
functions that are compatible with Equation (6) in
Theorem 3. Indeed, as we have shown in Section 3,
the presence of sub-optimal agents can limit the value
of ¢ with a relationship that involves 7. (i.e., Equa-
tion (8)). As our analysis will reveal, the proof of
Equation (13) is directly related to these worst-case
upper-bounds on ¢ (and, in order to exploit them suc-
cessfully, we needed to restrict ourselves to the case in
which go < 1). At this point, it has to be remarked
that, according to the value of myin, Equation (13) can
be significantly larger than Equation (6), thus show-
ing an increased difficulty in the statistical complexity
that is related to the stochasticity of sub-optimal ex-
perts.

At this point, it has to be noticed that the genera-
tive model we defined in Section 4.1 is significantly
more powerful than the one adopted in a classical
IRL setting (see, e.g., Metelli et al., 2021, 2023). For
single-agent problems, indeed, a query to the genera-
tive model provides only samples from the environ-
ment and from the expert agent mg,. In our con-
text, on the other hand, for each query, the generative
model provides demonstrations from each sub-optimal
expert. It can be shown that, by slightly modifying the

5We notice that similar results were presented in Metelli
et al. (2023) for the finite-horizon single expert IRL prob-
lem. In this work, we extend their construction and anal-
ysis to the infinite-horizon IRL model.
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Algorithm 1 Uniform Sampling for Inverse RL with

Suboptimal Experts (US-IRL-SE)

Require: samples collected in each (s,a) pair m

1: fort=1,2,...,m do

2:  Collect one tuple (s, (a”)"F}') where s' ~ p(-|s,a)
and a'” ~ 7, (-|s) from each (s,a) € S x A and
ie{l...,n+1}

3:  Update p and (7g,)"} according to Equation (4)

4: end for

learning formalism, Equation (13) actually represents
a lower bound to the number of samples that should
be gathered from each sub-optimal agent.® In this
sense, the statistical complexity increases significantly
in the sub-optimal expert setting compared to the sin-
gle agent one. Therefore, as a concluding remark, we
notice that, in order to gain the reduction in the feasi-
ble reward set that we discussed in Section 5, we need
to gather additional data in terms of demonstrations
from the sub-optimal experts. This unavoidable trade-
off is a direct consequence of the structure of the feasi-
ble set R, that we derived in Theorem 3, and, indeed,
it arises from the statistical complexity of estimating
reward functions that are compatible with the linear
constraints of Equation (6).

4.3 Uniform Sampling Algorithm

In this section, we present the Uniform Sampling al-
gorithm for Inverse RL with Suboptimal Experts (US-
IRL-SE). The pseudo-code can be found in Algorithm
1. As we can see, US-IRL-SE receives the number of
samples m that will be queried to the generative model
in each state-action pair. Then, it uniformly gathers
data across the entire state-action space, and it up-
dates the empirical estimates p and (7g, )i +1.

The following theorem (proof in Appendix C), de-
scribes the theoretical guarantees of US-IRL-SE.

Theorem 6. Let q; = min {7} max; &, (1 —~)7'},
and g = max{1,q }. Then, with a total budget of:

& (max { q%ilégeg%) (BSA(S +1og (5) }) _h

(1 —n)?
US-IRL-SE is (e,0)-correct and O (-) hides constant
and logarithmic dependencies.

Theorem 6 deserves some comments. First of all, it
formally shows that when the total number of queries
to the generative is sufficiently large, US-IRL-SE is
(e, 0)-correct, and its sample complexity is provided in
Equation (14). In this sense, we notice that, since m

SFor further details on this point, we defer the reader
to Appendix E.

represents the number of calls to the generative model
in each state-action pair, its expression can simply be
calculated by dividing Equation (14) by SA.” As a
consequence, we remark that, in order to compute the
value of m, the algorithm requires knowledge of the
minimum probability with which sub-optimal experts
play their actions.

We now proceed by analyzing in detail the sample
complexity guarantee. Equation (14) is the maximum
between two terms whose expressions closely resem-
ble the lower bound that we presented in Theorem 5.
Specifically, the only difference arises in the definition
of gy, g1 and ¢go. Currently, we are unsure whether
this gap arises from the lower bound or the algorithm
analysis, and we leave this gap to be filled in for fu-
ture work. Nevertheless, it has to be remarked that,
whenever the sub-optimal expert’s performance level
is sufﬁciently close to the one of the optimal agent (i.e.,
rl& < 1forallic{2.. . ,n+1}), Equation (14)
exactly recovers the lower bound that we presented in
Theorem 5. We remark that according to Theorem 3,
as the values of &;’s decrease, the feasible reward set is
substantially reduced. In this sense, US-IRL-SE enjoys
minimax optimality in the most interesting scenarios
where the presence of sub-optimal experts is partic-
ularly valuable for mitigating the intrinsic ambiguity
that affects inverse reinforcement learning problems.

Technical Remark To conclude, we highlight that,
although the algorithm is relatively simple, the proof
of Theorem 6 requires significant technical effort. The
main challenge arises from studying how the Haus-
dorft distance between Rg and Rg decreases as we
collect more data from the generatlve model. Indeed,
we recall that these feasible reward sets are subject to
the peculiar structure that we identified in Theorem 3.
More specifically, the set of constraints of Equation (6)
that arises from the presence of sub-optimal experts

complicates significantly the study of H (R@, R )

t
For further details on this point, we invite the reader
to consult our proofs Appendix C.

5 RELATED WORKS

Inverse Reinforcement Learning Historically,
solving an IRL problem (Adams et al., 2022) involves
determining a reward function that is compatible with
the behavior of an optimal expert. Since the seminal
work of Ng et al. (2000), the problem has been rec-
ognized as ill-posed, as multiple reward functions that

"The exact expression of m (i.e., constants and hidden
logarithmic factors) is provided in Appendix F.

8More precisely, under the condition that 7} & < 1, it
holds that go = q1, and g2 = 1.
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satisfies this requirement exists (Skalse et al., 2023).
For this reason, over the years, several algorithmic
criteria have been introduced to address this ambi-
guity issue. These criteria includes maximum margin
(Ratliff et al., 2006), Bayesian approaches (Ramachan-
dran and Amir, 2007), maximum entropy (Ziebart
et al., 2008), and many others (e.g., Majumdar et al.,
2017; Metelli et al., 2017; Zeng et al., 2022). More
recently, a new line of works have circumvented the
ambiguity issue by redefining the IRL task as the prob-
lem of estimating the entire feasible reward set (Metelli
et al., 2021; Lindner et al., 2022; Metelli et al., 2023).
In our work, we take this novel perspective, and, in this
sense, this recent research strand is the most related
to our document. Specifically, of particular interests
is the work of Metelli et al. (2023). In their work,
the authors study, for the first time, lower bounds for
the single-agent IRL problem in finite horizon settings;
furthermore, they show that uniform sampling algo-
rithm is minimax optimal for this task. Nevertheless,
it has to remarked that this recent strand of research
focuses entirely on single expert problems. As we have
shown, however, the extension to the multiple and sub-
optimal agents setting requires non-trivial effort. In-
deed, the feasible reward set significantly differ (see,
e.g., Theorem 3), and the problem is harder from a
statistical perspective (see, e.g., Theorem 5).

Multiple and/or Sub-optimal Experts The
presence of multiple/sub-optimal experts has garnered
attention in the Imitation Learning (IL, Hussein et al.,
2017) community. In IL problems, contrary to IRL,
the goal lies in directly leveraging demonstrations of
optimal behavior to accelerate the training process of
reinforcement learning algorithms. In this context,
works that are close in spirit to ours are Kurenkov
et al. (2020); Jing et al. (2020); Cheng et al. (2020); Liu
et al. (2023); here, the authors extends the IL formu-
lation to account for the fact that demonstrations are
provided from multiple and/or sub-optimal experts.
However, unlike our specific focus, their emphasis is
on understanding how to effectively exploit imperfect
demonstrations to improve training of RL agents. In
our work, instead, we exploit the presence of sub-
optimal agents to reduce the intrinsic ambiguity that
affects the IRL formulation. In this sense, our work is
complementary to several studies that analyzed how
to improve the identifiability of the reward function
in IRL problems by making additional structural as-
sumptions. These include the possibility of observing
an optimal agent interacting with several MDPs (e.g.,
Ratliff et al., 2006; Amin and Singh, 2016; Amin et al.,
2017) and focusing on peculiar types of MDPs that al-
lows for strong theoretical guarantees (e.g., Dvijotham
and Todorov, 2010; Kim et al., 2021; Cao et al., 2021).

Along this line of work, the most related to ours is
Rolland et al. (2022). Here, the authors study how
the presence of multiple experts impact the identifia-
bility of the reward function. Contrary to our work,
however, the authors assume each agent to follow an
entropy regularized objective and, furthermore, they
focus on the case in which all experts act optimally in
the underlying environment. In this sense, our work
encompasses a wider spectrum of applications, as we
do not require optimality for each of the agent, nor an
entropy regularized objective. Finally, it has to be re-
marked that the multiple expert setting and IRL have
been studied in Likmeta et al. (2021) with the goal of
providing practical algorithms that can be used in real-
world applications. Also in this scenario, each agent is
assumed to act optimally in the underlying domain.

6 CONCLUSIONS

In this work, we studied the novel problem of Inverse
RL where, in addition to demonstrations from an op-
timal expert, we can observe the behavior of multiple
and sub-optimal agents. More precisely, we first inves-
tigated the theoretical properties of the class of reward
functions that are compatible with a given set of ex-
perts, i.e., the feasible reward set. Our results formally
show that, by exploiting this additional structure, it
is possible to significantly reduce the intrinsic ambi-
guity that affects the IRL formulation. Secondly, we
have tackled the statistical complexity of estimating
the feasible reward set from a generative model. More
precisely, we have shown that a uniform sampling algo-
rithm is minimax optimal whenever the performance
level of the sub-optimal expert is sufficiently close to
the one of the optimal agent.

Our research opens up intriguing avenues for future
studies. For instance, since we have shown that sub-
optimal experts can improve the identifiability of the
reward function, future research should focus on build-
ing practical algorithms that can exploit this addi-
tional structure. To this end, as an intermediate step,
it might be interesting to extend our results to the case
in which the reward function is expressed as a linear
combination of features. This approach would enable
addressing infinite state-spaces (e.g., Ng et al., 2000).
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The checklist follows the references. For each ques-
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viding a brief inline description (1-2 sentences). Please
do not modify the questions. Note that the Checklist
section does not count towards the page limit. Not
including the checklist in the first submission won’t
result in desk rejection, although in such case we will
ask you to upload it during the author response period
and include it in camera ready (if accepted).

In your paper, please delete this instructions
block and only keep the Checklist section head-
ing above along with the questions/answers be-
low.

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes, mathematical setting are provided in
Section 2 and Section 4.1. For the algorithm,
we included a pseudo-code that explains its
behavior (see Algorithm 1).

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes. The statistical complexity of the algo-
rithm is described in Theorem 6. For com-
putational complexity, we refer the reader to
Appendix F.

(¢) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Not Applicable.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes. Each theoretical
statements is precise.

(b) Complete proofs of all theoretical results.
Yes, complete proof of all theoretical results
are presented in Appendix B and C.

c) Clear explanations of any assumptions. Yes,
below each theoretical results we include an
in-depth discussion that explains the results,
together with the theoretical requirements.
These discussions includes details on the as-
sumptions needed.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). Not Applicable.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Not
Applicable.

(¢) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Not Applicable.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Not Applicable.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. Not Applicable.

(b) The license information of the assets, if ap-
plicable. Not Applicable.

(¢c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Not Applica-
ble.

(d) Information about consent from data
providers/curators. Not Applicable.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not Applica-
ble.

(¢) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. Not Applicable.



