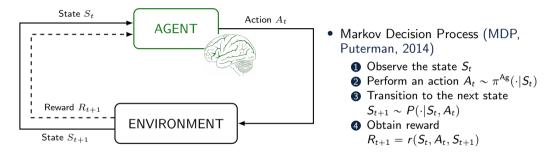


Policy Space Identification in Configurable Environments

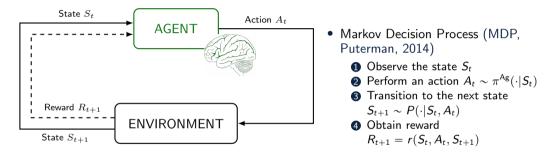
Alberto Maria Metelli


Guglielmo Manneschi

Marcello Restelli

Politecnico di Milano ECML PKDD 2021 - Journal Track

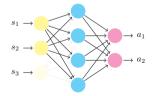
September 2021


Introduction	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
•0					
Reinford	cement Learning				

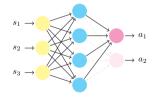
• Goal: maximize the expected cumulative discounted reward (Sutton and Barto, 2018):

$$\pi^{\mathsf{Ag}} \in \underset{\pi \in \Pi_{\Theta}}{\operatorname{arg\,max}} J^{\pi} = \mathbb{E}^{\pi} \left[\sum_{t \in \mathbb{N}} \gamma^{t} R_{t+1} \right] \qquad \Pi \text{ policy space}$$

Introduction	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
•0					
Reinford	cement Learning				

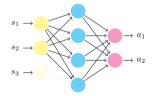


• Goal: maximize the expected cumulative discounted reward (Sutton and Barto, 2018):

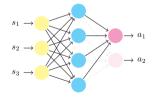

$$\pi^{\mathsf{Ag}} \in \underset{\pi \in \Pi_{\Theta}}{\arg \max} J^{\pi} = \mathbb{E}^{\pi} \left[\sum_{t \in \mathbb{N}} \gamma^{t} R_{t+1} \right] \qquad \qquad \Pi \text{ policy space}$$

Introduction	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
00					
Motivatio	ns and Problem				

- The **policy space** Π defines the **perception**, **actuation**, and **mapping** capabilities of an agent
- Research Question: How to identify the policy space of an agent by observing its behavior π^{Ag} ? \rightarrow Policy Space Identification (PSI)
- Applications
 - Configurable MDPs (Metelli et al., 2018)
 - Imitation Learning (Osa et al., 2018)

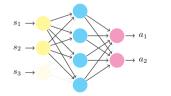




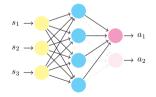


Introduction	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
00					
Motivatio	ns and Problem				

- The **policy space** Π defines the **perception**, **actuation**, and **mapping** capabilities of an agent
- Research Question: How to identify the policy space of an agent by observing its behavior π^{Ag} ? \rightarrow Policy Space Identification (PSI)
- Applications
 - Configurable MDPs (Metelli et al., 2018)
 - Imitation Learning (Osa et al., 2018)

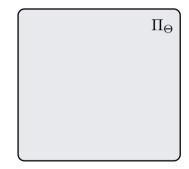






Introduction	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
00	00000	00	000		
Motivatio	ns and Problem				

- The **policy space** Π defines the **perception**, **actuation**, and **mapping** capabilities of an agent
- Research Question: How to identify the policy space of an agent by observing its behavior π^{Ag} ? \rightarrow Policy Space Identification (PSI)
- Applications
 - Configurable MDPs (Metelli et al., 2018)
 - Imitation Learning (Osa et al., 2018)


	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Policy S	Spaces and Corre	ectness			

- **Parametric** policy space Π_{Θ} , with $\Theta \subset \mathbb{R}^d$
- Agent's policy $\pi^{Ag} \in \Pi_{\Theta}$
- The agent **controls** (i.e., can change) $d^{Ag} < d$ parameters
- $I \subseteq \{1, \ldots, d\}$ subset of indexes

 $\Theta_I = \{ \boldsymbol{\theta} \in \Theta : \theta_i = 0, \forall i \in \{1, \dots, d\} \setminus I \}$

$$\underbrace{\pi^{\mathsf{Ag}} \in \Pi_{\Theta_{I^{\mathsf{Ag}}}}}_{\mathsf{sufficient}}$$

$$\forall i \in I^{Ag} : \pi^{Ag} \notin \Pi_{\Theta_{IAg}}$$

	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Policy S	Spaces and Corre	ectness			

- **Parametric** policy space Π_{Θ} , with $\Theta \subset \mathbb{R}^d$
- Agent's policy $\pi^{Ag} \in \Pi_{\Theta}$
- The agent **controls** (i.e., can change) $d^{Ag} < d$ parameters
- $I \subseteq \{1, \ldots, d\}$ subset of indexes

 $\Theta_I = \{ \boldsymbol{\theta} \in \Theta : \theta_i = 0, \forall i \in \{1, \dots, d\} \setminus I \}$

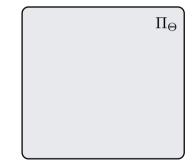
• I^{Ag} is **correct** for the agent's policy π^{Ag} iff

$$\underbrace{\pi^{\mathsf{Ag}} \in \Pi_{\Theta_{l^{\mathsf{Ag}}}}}_{\mathsf{sufficient}}$$

$$\forall i \in I^{\mathsf{Ag}} : \pi^{\mathsf{Ag}} \notin \Pi_{\Theta_i}$$

$$\Pi_{\Theta}$$

	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Policy S	Spaces and Corre	ectness			

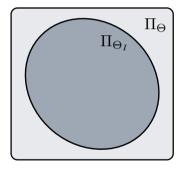

- **Parametric** policy space Π_{Θ} , with $\Theta \subset \mathbb{R}^d$
- Agent's policy $\pi^{Ag} \in \Pi_{\Theta}$
- The agent **controls** (i.e., can change) $d^{Ag} < d$ parameters
- $I \subseteq \{1, \ldots, d\}$ subset of indexes

 $\Theta_I = \{ \boldsymbol{\theta} \in \Theta : \theta_i = 0, \forall i \in \{1, \dots, d\} \setminus I \}$

• I^{Ag} is **correct** for the agent's policy π^{Ag} iff

$$\underbrace{\pi^{\mathsf{Ag}} \in \Pi_{\Theta_{I^{\mathsf{Ag}}}}}_{\mathsf{sufficient}}$$

$$\forall i \in I^{Ag} : \pi^{Ag} \notin \Pi_{\Theta_I}$$

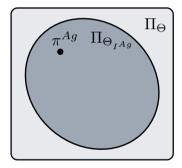


	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Policy S	Spaces and Corre	ectness			

- **Parametric** policy space Π_{Θ} , with $\Theta \subset \mathbb{R}^d$
- Agent's policy $\pi^{Ag} \in \Pi_{\Theta}$
- The agent **controls** (i.e., can change) $d^{Ag} < d$ parameters
- $I \subseteq \{1, \ldots, d\}$ subset of indexes

 $\Theta_I = \{ \boldsymbol{\theta} \in \Theta : \theta_i = 0, \forall i \in \{1, \ldots, d\} \setminus I \}$

$$\underbrace{\pi^{\mathsf{Ag}} \in \Pi_{\Theta_{/\mathsf{Ag}}}}_{\mathsf{sufficient}} \land \qquad \underbrace{\forall i \in I^{\mathsf{Ag}} : \pi^{\mathsf{Ag}} \notin \Pi_{\Theta_{/\mathsf{Ag}} \setminus \{0\}}}_{\mathsf{necessary}}$$

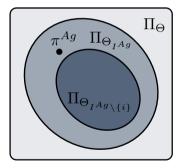


	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Policy S	Spaces and Corre	ectness			

- **Parametric** policy space Π_{Θ} , with $\Theta \subset \mathbb{R}^d$
- Agent's policy $\pi^{Ag} \in \Pi_{\Theta}$
- The agent **controls** (i.e., can change) $d^{Ag} < d$ parameters
- $I \subseteq \{1, \ldots, d\}$ subset of indexes

 $\Theta_{I} = \{ \boldsymbol{\theta} \in \Theta : \theta_{i} = 0, \forall i \in \{1, \ldots, d\} \setminus I \}$

$$\underbrace{\pi^{\mathsf{Ag}} \in \Pi_{\Theta_{I^{\mathsf{Ag}}}}}_{\mathsf{sufficient}} \qquad \land \qquad \underbrace{\forall i \in I^{\mathsf{Ag}} : \pi^{\mathsf{Ag}} \notin \Pi_{\Theta_{I^{\mathsf{Ag}} \setminus \{i\}}}}_{\mathsf{necessary}}$$



	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Policy S	Spaces and Corre	ectness			

- **Parametric** policy space Π_{Θ} , with $\Theta \subset \mathbb{R}^d$
- Agent's policy $\pi^{Ag} \in \Pi_{\Theta}$
- The agent **controls** (i.e., can change) $d^{Ag} < d$ parameters
- $I \subseteq \{1, \ldots, d\}$ subset of indexes

 $\Theta_{I} = \{ \boldsymbol{\theta} \in \Theta : \theta_{i} = 0, \forall i \in \{1, \ldots, d\} \setminus I \}$

$$\underbrace{\pi^{\mathsf{Ag}} \in \Pi_{\Theta_{I} \mathsf{Ag}}}_{\mathsf{sufficient}} \quad \land \quad \underbrace{\forall i \in I^{\mathsf{Ag}} : \pi^{\mathsf{Ag}} \notin \Pi_{\Theta_{I} \mathsf{Ag} \setminus \{i\}}}_{\mathsf{necessary}}$$

	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Hypoth	esis Tests				

$$\mathcal{H}_{0,I} : \pi^{\mathsf{Ag}} \in \Pi_{\Theta_I} \quad \text{vs} \quad \mathcal{H}_{1,I} : \pi^{\mathsf{Ag}} \in \Pi_{\Theta \setminus \Theta_I}$$

- Dataset of samples $\{(S_i, A_i)\}_{i=1}^n$ collected with the agent's policy π^{Ag}
- Likelihood of a parameter $oldsymbol{ heta} \in \Theta$

• Generalized likelihood ratio statistic (Casella and Berger, 2002)

$$\Lambda_{I} = \frac{\sup_{\boldsymbol{\theta} \in \Theta_{I}} \widehat{\mathcal{L}}(\boldsymbol{\theta})}{\sup_{\boldsymbol{\theta} \in \Theta} \widehat{\mathcal{L}}(\boldsymbol{\theta})}$$

 $\begin{array}{l} \Lambda_{I}\simeq 0 \ \rightarrow \ \text{reject} \ \mathcal{H}_{0,I} \\ \Lambda_{I}\simeq 1 \ \rightarrow \ \text{do not reject} \ \mathcal{H}_{0,I} \end{array}$

	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Hypoth	esis Tests				

$$\mathcal{H}_{0,I}$$
 : $\pi^{\mathsf{Ag}} \in \Pi_{\Theta_I}$ vs $\mathcal{H}_{1,I}$: $\pi^{\mathsf{Ag}} \in \Pi_{\Theta \setminus \Theta_I}$

- Dataset of samples $\{(S_i, A_i)\}_{i=1}^n$ collected with the agent's policy π^{Ag}
- Likelihood of a parameter $\boldsymbol{\theta} \in \Theta$

$$\widehat{\mathcal{L}}(\boldsymbol{\theta}) = \prod_{i=1}^{n} \pi_{\boldsymbol{\theta}}(A_i | S_i) \qquad \qquad \mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}[\widehat{\mathcal{L}}(\boldsymbol{\theta})]$$

• Generalized likelihood ratio statistic (Casella and Berger, 2002)

$$\Lambda_I = \frac{\sup_{\boldsymbol{\theta} \in \Theta_I} \widehat{\mathcal{L}}(\boldsymbol{\theta})}{\sup_{\boldsymbol{\theta} \in \Theta} \widehat{\mathcal{L}}(\boldsymbol{\theta})}$$

 $\begin{array}{l} \Lambda_{I}\simeq 0 \ \rightarrow \ \text{reject} \ \mathcal{H}_{0,I} \\ \Lambda_{I}\simeq 1 \ \rightarrow \ \text{do not reject} \ \mathcal{H}_{0,I} \end{array}$

	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Hypoth	esis Tests				

$$\mathcal{H}_{0,I} : \pi^{\mathsf{Ag}} \in \Pi_{\Theta_I} \quad \text{vs} \quad \mathcal{H}_{1,I} : \pi^{\mathsf{Ag}} \in \Pi_{\Theta \setminus \Theta_I}$$

- Dataset of samples $\{(S_i, A_i)\}_{i=1}^n$ collected with the agent's policy π^{Ag}
- Likelihood of a parameter $oldsymbol{ heta} \in \Theta$

$$\widehat{\mathcal{L}}(\boldsymbol{\theta}) = \prod_{i=1}^{n} \pi_{\boldsymbol{\theta}}(A_i|S_i) \qquad \qquad \mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}[\widehat{\mathcal{L}}(\boldsymbol{\theta})]$$

• Generalized likelihood ratio statistic (Casella and Berger, 2002)

$$\Lambda_{I} = \frac{\sup_{\boldsymbol{\theta} \in \Theta_{I}} \widehat{\mathcal{L}}(\boldsymbol{\theta})}{\sup_{\boldsymbol{\theta} \in \Theta} \widehat{\mathcal{L}}(\boldsymbol{\theta})}$$

 $\Lambda_I \simeq 0 \rightarrow \text{reject } \mathcal{H}_{0,I}$ $\Lambda_I \simeq 1 \rightarrow \text{do not reject } \mathcal{H}_{0,I}$

	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Hypoth	esis Tests				

$$\mathcal{H}_{0,I}$$
 : $\pi^{\mathsf{Ag}} \in \Pi_{\Theta_I}$ vs $\mathcal{H}_{1,I}$: $\pi^{\mathsf{Ag}} \in \Pi_{\Theta \setminus \Theta_I}$

- Dataset of samples $\{(S_i, A_i)\}_{i=1}^n$ collected with the agent's policy π^{Ag}
- Likelihood of a parameter $oldsymbol{ heta}\in\Theta$

$$\widehat{\mathcal{L}}(\boldsymbol{\theta}) = \prod_{i=1}^{n} \pi_{\boldsymbol{\theta}}(A_i | S_i) \qquad \qquad \mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}[\widehat{\mathcal{L}}(\boldsymbol{\theta})]$$

• Generalized likelihood ratio statistic (Casella and Berger, 2002)

$$\Lambda_{I} = \frac{\sup_{\boldsymbol{\theta} \in \Theta_{I}} \widehat{\mathcal{L}}(\boldsymbol{\theta})}{\sup_{\boldsymbol{\theta} \in \Theta} \widehat{\mathcal{L}}(\boldsymbol{\theta})}$$

$$\Lambda_I \simeq 0 \rightarrow \text{ reject } \mathcal{H}_{0,I}$$

 $\Lambda_I \simeq 1 \rightarrow \text{ do not reject } \mathcal{H}_{0,I}$

	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Hypoth	esis Tests				

$$\mathcal{H}_{0,I}$$
 : $\pi^{\mathsf{Ag}} \in \Pi_{\Theta_I}$ vs $\mathcal{H}_{1,I}$: $\pi^{\mathsf{Ag}} \in \Pi_{\Theta \setminus \Theta_I}$

- Dataset of samples $\{(S_i, A_i)\}_{i=1}^n$ collected with the agent's policy π^{Ag}
- Likelihood of a parameter $oldsymbol{ heta}\in\Theta$

$$\widehat{\mathcal{L}}(\boldsymbol{\theta}) = \prod_{i=1}^{n} \pi_{\boldsymbol{\theta}}(A_i | S_i) \qquad \qquad \mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}[\widehat{\mathcal{L}}(\boldsymbol{\theta})]$$

• Generalized likelihood ratio statistic (Casella and Berger, 2002)

$$\Lambda_{I} = \frac{\sup_{\boldsymbol{\theta} \in \Theta_{I}} \widehat{\mathcal{L}}(\boldsymbol{\theta})}{\sup_{\boldsymbol{\theta} \in \Theta} \widehat{\mathcal{L}}(\boldsymbol{\theta})} \qquad \qquad \Lambda_{I} \simeq 0 \quad \rightarrow \text{ reject } \mathcal{H}_{0,I} \\ \Lambda_{I} \simeq 1 \quad \rightarrow \text{ do not reject } \mathcal{H}_{0,I}$$

	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Combin	atorial Identifica	ation Rule			

$$\underbrace{ \underset{\text{sufficient}}{\text{do not reject } \mathcal{H}_{0,\widehat{I}}}_{\text{sufficient}} \quad \land \quad \underbrace{\forall i \in \widehat{I} : \text{reject } \mathcal{H}_{0,\widehat{I} \setminus \{i\}}}_{\text{necessary}}$$

- Requires $O(2^d)$ tests! \rightarrow combinatorial
- $\bullet\,$ Works under multiple representations of $\pi^{\rm Ag}$

	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Combin	atorial Identifica	ation Rule			

$$\underbrace{ \underset{\text{sufficient}}{\text{do not reject } \mathcal{H}_{0,\widehat{I}}}_{\text{sufficient}} \quad \land \quad \underbrace{\forall i \in \widehat{I} : \text{reject } \mathcal{H}_{0,\widehat{I} \setminus \{i\}}}_{\text{necessary}}$$

- Requires $O(2^d)$ tests! \rightarrow combinatorial
- Works under multiple representations of $\pi^{\rm Ag}$

	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Combin	atorial Identifica	ation Rule			

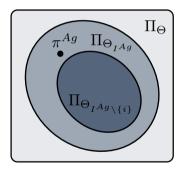
$$\underbrace{ \underset{\text{sufficient}}{\text{do not reject } \mathcal{H}_{0,\widehat{I}}}_{\text{sufficient}} \quad \land \quad \underbrace{\forall i \in \widehat{I} : \text{reject } \mathcal{H}_{0,\widehat{I} \setminus \{i\}}}_{\text{necessary}}$$

- Requires $O(2^d)$ tests! \rightarrow combinatorial
- Works under multiple representations of $\pi^{\rm Ag}$

	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Combin	atorial Identifica	ation Rule			

$$\underbrace{ \underset{\text{sufficient}}{\text{do not reject } \mathcal{H}_{0,\widehat{I}}}_{\text{sufficient}} \quad \land \quad \underbrace{\forall i \in \widehat{I} : \text{reject } \mathcal{H}_{0,\widehat{I} \setminus \{i\}}}_{\text{necessary}}$$

- Requires $O(2^d)$ tests! \rightarrow combinatorial
- Works under multiple representations of $\pi^{\rm Ag}$

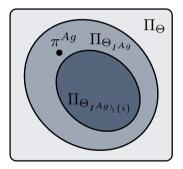

	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Identifia	ability and Corre	ctness			

• Π_Θ is identifiable if

$$\forall \boldsymbol{\theta}', \boldsymbol{\theta} \in \Theta \qquad \pi_{\boldsymbol{\theta}'}(\cdot|\boldsymbol{s}) = \pi_{\boldsymbol{\theta}}(\cdot|\boldsymbol{s}) \text{ a.s. } \implies \boldsymbol{\theta}' = \boldsymbol{\theta}$$

- We can reason on the **parameters** only!
- The only correct $I^{\rm Ag}$ for the agent's policy $\pi_{\theta^{\rm Ag}}$ is

$$I^{\mathsf{Ag}} = \left\{ i \in \{1, \dots, d\} : \theta_i^{\mathsf{Ag}} \neq 0 \right\}$$

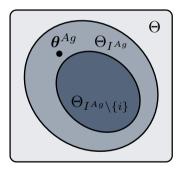

	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Identifia	ability and Corre	ctness			

• Π_Θ is identifiable if

 $\forall \boldsymbol{\theta}', \boldsymbol{\theta} \in \Theta \qquad \pi_{\boldsymbol{\theta}'}(\cdot|\boldsymbol{s}) = \pi_{\boldsymbol{\theta}}(\cdot|\boldsymbol{s}) \text{ a.s. } \implies \boldsymbol{\theta}' = \boldsymbol{\theta}$

- We can reason on the parameters only!
- The only correct $I^{\rm Ag}$ for the agent's policy $\pi_{\theta^{\rm Ag}}$ is

$$I^{\mathsf{Ag}} = \left\{ i \in \{1, \dots, d\} : \theta_i^{\mathsf{Ag}} \neq 0 \right\}$$


	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	00000				
Identifia	ability and Corre	ctness			

• Π_Θ is identifiable if

 $\forall oldsymbol{ heta}', oldsymbol{ heta} \in \Theta \qquad \pi_{oldsymbol{ heta}'}(\cdot|s) = \pi_{oldsymbol{ heta}}(\cdot|s) ext{ a.s. } \implies oldsymbol{ heta}' = oldsymbol{ heta}$

- We can reason on the parameters only!
- The only correct $I^{\rm Ag}$ for the agent's policy $\pi_{\pmb{\theta}^{\rm Ag}}$ is

$$I^{\mathsf{Ag}} = \left\{ i \in \{1, \dots, d\} : \theta_i^{\mathsf{Ag}} \neq 0 \right\}$$

Introduction 00	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
	Identification R	lule			

$$\mathcal{H}_{0,i}$$
 : $\theta_i^{\mathrm{Ag}} = 0$ vs $\mathcal{H}_{1,i}$: $\theta_i^{\mathrm{Ag}} \neq 0$

• Simplified Identification Rule: \hat{I} is the union of all $i \in \{1, ..., d\}$ such that:

- Requires O(d) tests! \rightarrow linear
- Works under identifiability only!

Introduction	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
00	00000	00	000	OO	
Simplified	Identification F	Rule			

$$\mathcal{H}_{0,i}$$
 : $\theta_i^{\mathrm{Ag}} = 0$ vs $\mathcal{H}_{1,i}$: $\theta_i^{\mathrm{Ag}} \neq 0$

• Simplified Identification Rule: \hat{I} is the union of all $i \in \{1, ..., d\}$ such that:

- Requires O(d) tests! \rightarrow linear
- Works under identifiability only!

Introduction	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
00	00000	00	000	OO	
Simplified	Identification F	Rule			

$$\mathcal{H}_{0,i}$$
 : $\theta_i^{\mathrm{Ag}} = 0$ vs $\mathcal{H}_{1,i}$: $\theta_i^{\mathrm{Ag}} \neq 0$

• Simplified Identification Rule: \hat{I} is the union of all $i \in \{1, ..., d\}$ such that:

- Requires O(d) tests! \rightarrow linear
- Works under identifiability only!

Introduction	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
00	00000	00	000	OO	
Simplified	Identification F	Rule			

$$\mathcal{H}_{0,i}$$
 : $\theta_i^{\mathrm{Ag}} = 0$ vs $\mathcal{H}_{1,i}$: $\theta_i^{\mathrm{Ag}} \neq 0$

• Simplified Identification Rule: \hat{I} is the union of all $i \in \{1, ..., d\}$ such that:

- Requires O(d) tests! \rightarrow linear
- Works under identifiability only!

Ambiguous Identification		PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
Ambiguous Identification			•0			
	Ambigu	ous Identificatio	on			

① The agent **does not control** θ_i or...

② ...the agent has **consciously** chosen to set $\theta_i = 0$

- Problem: How to distinguish between these two scenarios?
- Idea: change the environment to make the parameter "maximally important" → Configurable Environment (Metelli et al., 2018)

00	00000	•0		
Ambiguous	s Identification			

1 The agent **does not control** θ_i or...

② ...the agent has **consciously** chosen to set $\theta_i = 0$

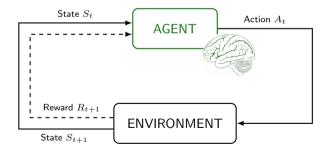
- Problem: How to distinguish between these two scenarios?
- Idea: change the environment to make the parameter "maximally important" → Configurable Environment (Metelli et al., 2018)

	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
		••			
Ambigu	ious Identificatio	on			

- **1** The agent **does not control** θ_i or...
- **2** ...the agent has **consciously** chosen to set $\theta_i = 0$

- Problem: How to distinguish between these two scenarios?
- Idea: change the environment to make the parameter "maximally important" → Configurable Environment (Metelli et al., 2018)

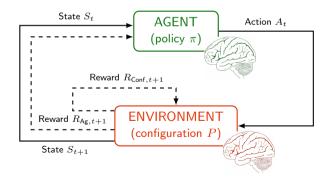
	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
		••			
Ambigu	ious Identificatio	on			


1 The agent **does not control** θ_i or...

2 ...the agent has **consciously** chosen to set $\theta_i = 0$

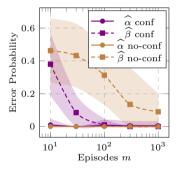
- Problem: How to distinguish between these two scenarios?
- Idea: change the environment to make the parameter "maximally important" → Configurable Environment (Metelli et al., 2018)

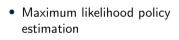
	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
		00			
Non-Co	nfigurable Envir	ronments			


MDP (Puterman, 2014) the environment is fixed and out of control

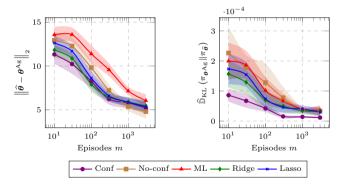
Configurable Environments		PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
Configurable Environments			00			
	Configu	rable Environm	ents			

Conf-MDP (Metelli et al., 2018)

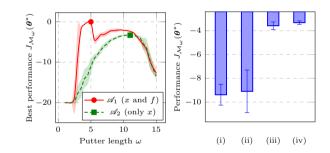

the environment can be configured


	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
			000		
Perform		ntification Rules			

- $\pi_{m{ heta}}$ linear in RBF features ϕ
- Agent observes a limited subset of ϕ
- Configure the initial state distribution


$$\begin{split} \alpha &= \Pr\left(\exists i \notin I^{\operatorname{Ag}} \, : \, i \in \widehat{I}\right) \\ \beta &= \Pr\left(\exists i \in I^{\operatorname{Ag}} \, : \, i \notin \widehat{I}\right) \end{split}$$

	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
			000		
Applicat	tion to Imitatior	n Learning			



$$-\sum_{i=1}^n \log \pi_{\boldsymbol{\theta}}(\boldsymbol{a}_i|\boldsymbol{s}_i) + \operatorname{Reg}(\boldsymbol{\theta})$$

	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References
			000		
Applica ⁻ Minigolf	tion to Conf-MI	DP			

- \mathscr{A}_1 observes *position* \times and *friction f*
- \mathscr{A}_2 observes *position* x only
- (i) random choice
 (ii) optimal for 𝒜₁
 (iii) using identification rule
- (iv) optimal for \mathscr{A}_2

	PSI in Fixed Environment	PSI in Configurable Environments Environment		Conclusions	References			
				0				
Discussion and Conclusions								

Contributions

- Identification rules
- Environment configurability to improve identification
- Applications of policy space identification

Future Works

- Bayesian statistical tests
- Multi-agent systems

	PSI in Fixed Environment	PSI in Configurable Environments Environment		Conclusions	References			
				0				
Discussion and Conclusions								

Contributions

- Identification rules
- Environment configurability to improve identification
- Applications of policy space identification

Future Works

- Bayesian statistical tests
- Multi-agent systems

Thank You for Your Attention!

Code: github.com/albertometelli/policy-space-identification Contact: albertomaria.metelli@polimi.it

	PSI in Fixed Environment	PSI in Configurable Environments Environment	Experiments	Conclusions	References		
References I							

George Casella and Roger L Berger. Statistical inference, volume 2. Duxbury Pacific Grove, CA, 2002.
Alberto Maria Metelli, Mirco Mutti, and Marcello Restelli. Configurable markov decision processes. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 3488–3497. PMLR, 2018.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, and Jan Peters. An algorithmic perspective on imitation learning. *Foundations and Trends in Robotics*, 7(1-2):1–179, 2018. doi: 10.1561/230000053.

Martin L Puterman. *Markov decision processes: discrete stochastic dynamic programming.* John Wiley & Sons, 2014. Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction.* MIT press, 2018.