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Reinforcement Learning

Reinforcement Learning

e Reinforcement Learning (RL) [14]:
e learning by interaction.

@ Parametric policy: mg.

e Expected return: J(6

T(7)
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Introduction
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Imitation learning

State of the Art

e RL requires a reward function R(s, a).

@ Designing a suitable reward function is challenging (e.g., car
driving task [1]).

@ Learning from demonstrations (/mitation Learning):

e Behavioral Cloning (BC) [2];
o Inverse Reinforcement Learning (IRL) [12].
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Motivations and Goals

Motivations and Goals

Feature extraction

Feature expectation . Gradient-based
o8] e[g]
*l16] [ gfig ef11] HIRL o[13]
o[1] o[17]
o[6]

@ Motivations — state-of-the-art IRL algorithms require:
e the environment transition model;
o a set of engineered reward features.
@ Goal — design an IRL algorithm requiring only expert’s
trajectories.
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Feature extraction

Feature extraction
Expert's COmpatible Value Features

Extract the compatible value functions.

First-order condition on policy gradient [15]:

Ved(0 // 6,%,(s,a) Ve log mg(a|s)Q™ (s, a)dsda = 0.

Expert's COmpatible Value Features (ECO-Q):

@ Extension to unvisited state-action pairs with KNN.
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Feature extraction
Expert's COmpatible Value Features

@ Extract the compatible value functions.

e First-order condition on policy gradient [15]:
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Feature extraction

Feature extraction
Expert's COmpatible Value Features

@ Extract the compatible value functions.
e First-order condition on policy gradient [15]:

Ved(0 // 6,%,(s,a) Ve log mg(a|s)Q™ (s, a)dsda = 0.

e Expert's COmpatible Value Features (ECO-Q):

VeJ(0) =0 Ve logmg L QT® P = nuII(Vg |Og7T0TDZ?,y)

@ Extension to unvisited state-action pairs with KNN.



Feature extraction

Feature extraction
Expert's COmpatible Reward Features

o Extract the compatible reward functions.
e Expert’s COmpatible Reward Features (ECO-R):
e model-based ECO-R

wME — (I - yPmy)®;
e model-free ECO-R

WM = (1 - 7).
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Reward selection

Preliminaries

@ Linear reward parametrization:
r=VYuw.

@ Select a reward function that:

e is maximum of J(8);
e penalizes maximally deviations from the expert's policy.

@ Second-order conditions on policy Hessian [10].
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Reward selection

Second-Order criteria

@ Second-order optimality criteria:

e minimize the maximum eigenvalue;

e minimize the trace.
@ Negative semidefinite Hessian as constraint.
@ Second-order trace heuristic:

o reduced space of ECO-R;

e closed-form solution: t
r

W= —.
]2
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Experiments

@ Environments:
o Taxi problem [4] (finite);
o Linear-Quadratic Gaussian Regulator [5] (continuous);
o Car on the Hill [7] (continuous).
@ Metrics:
e Learning speed;
Average return;
Parameter distance;
Policy distance (KL-divergence).
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Taxi

Learning speed

e Comparison with Maximum Entropy IRL [18], LPAL [16] and

BC.
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Car on the Hill

Car on the Hill

Preliminaries

@ Continuous episodic problem. g)

@ Expert's policy computed via Q
FQI [7].
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Car on the Hill

Learning speed
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Contributions and Future Works

Conclusions

e Contributions
e Construction of both features and reward function.
o Faster learning speed w.r.t. the original reward function.
o Better performance w.r.t. BC and several IRL methods.
@ Paper submitted to NIPS.
@ Future Works

e Theoretical analysis of the maximum likelihood policy.
e Direct construction of ECO-R.
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Policy Rank

@ How large is the space of ECO-Qs?

Definition

Let mg a policy with k parameters belonging to the class g and
differentiable in 8. The policy rank is the dimension of the space
of the linear combinations of the partial derivatives of mg w.r.t. 6:

rank(mg) = dim(Tr,), Trp = {Vemea : a € R¥}.

@ The policy rank quantifies how much a policy is informative
for recovering the optimal value function (and so the optimal
reward function).

@ In finite domains it holds: rank(mg) < min {k,|S||A| — |S|}.
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Reward shaping

@ Given a reward function R inducing an optimal policy T,
which is the class of rewards preserving the optimality of 77

@ Optimality of 7 is preserved for potential-based shaping
functions:

R'(s,a) = R(s,a) + 'y/s P(s'|s, a)x(s')ds" — x(s)

@ A smart choice is x(s) = V7(s), so we get the advantage
function:

R'(s,a) = Q" (s,a) — V™(s,a) = A™(s, a).

@ The advantage function allows running RL algorithms with
smaller ~.
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Multi-objective second-order criteria

o Ideally we would like to minimize “all” the eigenvalues of the
policy Hessian.

minimize A(w) = (A1(w), A2(w), ..., Au(w))

wERP

subject to  HgJ(0,w) + ¢l < 0.

@ We consider linear scalarizations:
k
L), 7) =D 7idi(w) =7 A(w).
i=1

@ y1=1and v =0fori=23, .., k we get maximum
eigenvalue optimality criterion.
e vi=1fori=1,2,..., k we get trace optimality criterion.
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Linear Quadratic Gaussian Regulator (LQG)

Preliminaries

@ Continuous infinite-horizon problem.

e Gaussian (noisy) expert’s policy, the mean is the optimal
action.

@ Variance to test resilience to imperfect experts.
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1D-LQG

Learning speed

o Comparison with GIRL.
@ Train a Gaussian policy with REINFORCE.
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1D-LQG

Sensitivity to the number of expert's demonstrations

Parameter (o2 = 0.1) Average return (6% =0.1)
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1D-LQG

Recovered rewards

Reward function Advantage function GIRL-square
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2D-LQG

Learning speed
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2D-LQG

Shape of expected return

Maximum Eigenvalue optimal (a) Trace optimal (a) Trace heuristic (a)

expected return
expected return
expected return

Trace optimal (b)

expected return
expected return
expected return
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Trajectories
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