

Compatible Reward Inverse Reinforcement Learning

Alberto Maria Metelli

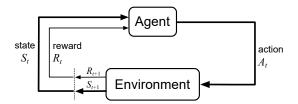
Supervisor: Marcello Restelli Co-supervisor: Matteo Pirotta

Politecnico di Milano M.Sc. in Computer Science and Engineering

27th July 2017

Reinforcement Learning

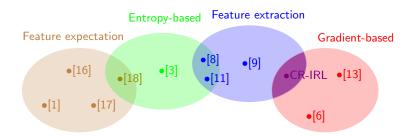
- Reinforcement Learning (RL) [14]:
 - learning by interaction.
- Parametric policy: π_{θ} .
- Expected return: $J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}} \left[\sum_{t=0}^{I(\tau)} \gamma^{t} R(s_{\tau,t}, a_{\tau,t}) \right].$



State of the Art

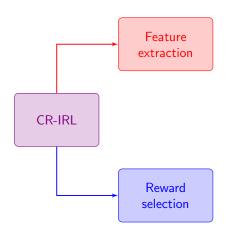
- RL requires a reward function R(s, a).
- Designing a suitable reward function is challenging (e.g., car driving task [1]).
- Learning from demonstrations (*Imitation Learning*):
 - Behavioral Cloning (BC) [2];
 - Inverse Reinforcement Learning (IRL) [12].

Motivations and Goals

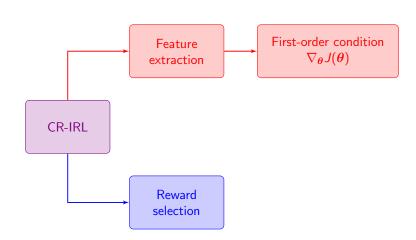


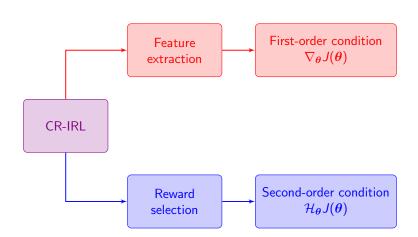
- Motivations state-of-the-art IRL algorithms require:
 - the environment transition model;
 - a set of engineered reward features.
- Goal design an IRL algorithm requiring only expert's trajectories.

Compatible Reward Inverse Reinforcement Learning Overview



Compatible Reward Inverse Reinforcement Learning Overview





- Extract the compatible value functions.
- First-order condition on policy gradient [15]:

$$abla_{m{ heta}} J(m{ heta}) = \int_{\mathcal{S}} \int_{\mathcal{A}} \delta^{\pi_{m{ heta}}}_{\mu,\gamma}(s,a)
abla_{m{ heta}} \log \pi_{m{ heta}}(a|s) Q^{\pi_{m{ heta}}}(s,a) \mathrm{d} s \mathrm{d} a = \mathbf{0}.$$

Expert's COmpatible Value Features (ECO-Q):

- Extract the compatible value functions.
- First-order condition on policy gradient [15]:

$$abla_{m{ heta}} J(m{ heta}) = \int_{\mathcal{S}} \int_{\mathcal{A}} \delta^{\pi_{m{ heta}}}_{\mu,\gamma}(s,a)
abla_{m{ heta}} \log \pi_{m{ heta}}(a|s) Q^{\pi_{m{ heta}}}(s,a) \mathrm{d} s \mathrm{d} a = \mathbf{0}.$$

Expert's COmpatible Value Features (ECO-Q):

$$abla_{m{ heta}} J(m{ heta}) = \mathbf{0}$$

- Extract the compatible value functions.
- First-order condition on policy gradient [15]:

$$abla_{m{ heta}} J(m{ heta}) = \int_{\mathcal{S}} \int_{\mathcal{A}} \delta^{\pi_{m{ heta}}}_{\mu,\gamma}(s,a)
abla_{m{ heta}} \log \pi_{m{ heta}}(a|s) Q^{\pi_{m{ heta}}}(s,a) \mathrm{d} s \mathrm{d} a = \mathbf{0}.$$

Expert's COmpatible Value Features (ECO-Q):

$$oxed{
abla_{oldsymbol{ heta}} J(oldsymbol{ heta}) = oldsymbol{0}} oxed{
abla_{oldsymbol{ heta}} \log \pi_{oldsymbol{ heta}} \perp Q^{\pi_{oldsymbol{ heta}}}}$$

- Extract the compatible value functions.
- First-order condition on policy gradient [15]:

$$abla_{m{ heta}} J(m{ heta}) = \int_{\mathcal{S}} \int_{\mathcal{A}} \delta^{\pi_{m{ heta}}}_{\mu,\gamma}(s,a)
abla_{m{ heta}} \log \pi_{m{ heta}}(a|s) Q^{\pi_{m{ heta}}}(s,a) \mathrm{d} s \mathrm{d} a = \mathbf{0}.$$

Expert's COmpatible Value Features (ECO-Q):

$$\boxed{ \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbf{0} } \boxed{ \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} \perp Q^{\pi_{\boldsymbol{\theta}}} } \boxed{ \boldsymbol{\Phi} = \mathsf{null} \big(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}^{\ T} \mathbf{D}_{\mu, \gamma}^{\pi_{\boldsymbol{\theta}}} \big) }$$

- Extract the compatible reward functions.
- Expert's COmpatible Reward Features (ECO-R):
 - model-based ECO-R

$$\mathbf{\Psi}^{MB} = (\mathbf{I} - \gamma \mathbf{P} \boldsymbol{\pi}_{\boldsymbol{\theta}}) \mathbf{\Phi};$$

model-free ECO-R

$$\mathbf{\Psi}^{MF} = (\mathbf{I} - \tilde{\pi}_{m{ heta}})\mathbf{\Phi}.$$

Reward selection

Linear reward parametrization:

$$\mathbf{r}=\mathbf{\Psi}\boldsymbol{\omega}$$
.

- Select a reward function that:
 - is maximum of $J(\theta)$;
 - penalizes maximally deviations from the expert's policy.
- Second-order conditions on policy Hessian [10].

Reward selection Second-Order criteria

- Second-order optimality criteria:
 - minimize the maximum eigenvalue;
 - minimize the trace.
- Negative semidefinite Hessian as constraint.
- Second-order trace heuristic:
 - reduced space of ECO-R;
 - closed-form solution:

$$\omega = rac{\mathsf{tr}}{\|\mathsf{tr}\|_2}.$$

Experiments

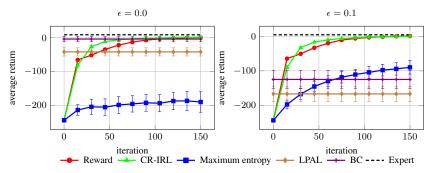
- Environments:
 - Taxi problem [4] (finite);
 - Linear-Quadratic Gaussian Regulator [5] (continuous);
 - Car on the Hill [7] (continuous).
- Metrics:
 - Learning speed;
 - Average return;
 - Parameter distance;
 - Policy distance (KL-divergence).

Taxi
Preliminaries

- Finite episodic problem.
- Expert's ϵ -Boltzmann policy with state-dependent features.

4	R				G
3	0				
2					
1					
)	Y			В	
•	0	1	2	3	4

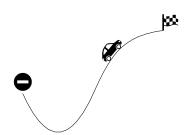
 Comparison with Maximum Entropy IRL [18], LPAL [16] and BC.



Car on the Hill

Car on the Hill Preliminaries

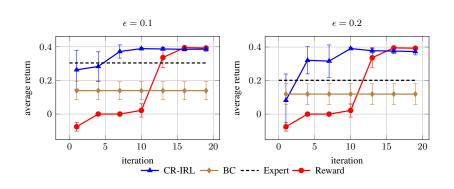
- Continuous episodic problem.
- Expert's policy computed via FQI [7].



Car on the Hill

Car on the Hill

Learning speed



Conclusions

- Contributions
 - Construction of both features and reward function.
 - Faster learning speed w.r.t. the original reward function.
 - Better performance w.r.t. BC and several IRL methods.
- Paper submitted to NIPS.
- Future Works
 - Theoretical analysis of the maximum likelihood policy.
 - Direct construction of ECO-R.

References I

- [1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In *ICML*, page 1. ACM, 2004.
- [2] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning from demonstration. *Robotics and Autonomous Systems*, 57(5):469–483, 2009.
- [3] Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement learning. In *AISTATS*, pages 182–189, 2011.
- [4] Thomas G. Dietterich. Hierarchical reinforcement learning with the maxq value function decomposition. *Journal of Artificial Intelligence Research*, 13:227–303, 2000.
- [5] Peter Dorato, Vito Cerone, and Chaouki Abdallah. Linear Quadratic Control: An Introduction. Krieger Publishing Co., Inc., Melbourne, FL, USA, 2000.
- [6] Peter Englert and Marc Toussaint. Inverse kkt-learning cost functions of manipulation tasks from demonstrations. In *Proceedings of the International Symposium of Robotics Research*, 2015.

References II

- [7] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning. *Journal of Machine Learning Research*, 6(Apr):503–556, 2005.
- [8] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control via policy optimization. In *ICML*, volume 48 of *JMLR Workshop and Conference Proceedings*, pages 49–58. JMLR.org, 2016.
- [9] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Feature construction for inverse reinforcement learning. In *NIPS*, pages 1342–1350. Curran Associates, Inc., 2010.
- [10] Giorgio Manganini, Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Following newton direction in policy gradient with parameter exploration. In *IJCNN*, pages 1–8. IEEE, 2015.
- [11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

References III

- [12] Andrew Y. Ng, Stuart J. Russell, et al. Algorithms for inverse reinforcement learning. In *ICML*, pages 663–670, 2000.
- [13] Matteo Pirotta and Marcello Restelli. Inverse reinforcement learning through policy gradient minimization. In AAAI, pages 1993–1999, 2016.
- [14] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction, volume 1. MIT press Cambridge, 1998.
- [15] Richard S. Sutton, David A. McAllester, Satinder P. Singh, Yishay Mansour, et al. Policy gradient methods for reinforcement learning with function approximation. In NIPS, volume 99, pages 1057–1063, 1999.
- [16] Umar Syed, Michael H. Bowling, and Robert E. Schapire. Apprenticeship learning using linear programming. In *ICML*, volume 307 of *ACM International Conference Proceeding Series*, pages 1032–1039. ACM, 2008.
- [17] Umar Syed and Robert E. Schapire. A game-theoretic approach to apprenticeship learning. In NIPS, pages 1449–1456, 2007.
- [18] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse reinforcement learning. In AAAI, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

Policy Rank

How large is the space of ECO-Qs?

Definition

Let π_{θ} a policy with k parameters belonging to the class Π_{Θ} and differentiable in θ . The policy rank is the dimension of the space of the linear combinations of the partial derivatives of π_{θ} w.r.t. θ :

$$\operatorname{\mathsf{rank}}(\pi_{oldsymbol{ heta}}) = \dim(\Gamma_{\pi_{oldsymbol{ heta}}}), \quad \Gamma_{\pi_{oldsymbol{ heta}}} = \{ \nabla_{oldsymbol{ heta}} \pi_{oldsymbol{ heta}} lpha : oldsymbol{lpha} \in \mathbb{R}^k \}.$$

- The policy rank quantifies how much a policy is informative for recovering the optimal value function (and so the optimal reward function).
- In finite domains it holds: $rank(\pi_{\theta}) \leq min\{k, |\mathcal{S}||\mathcal{A}| |\mathcal{S}|\}.$

Reward shaping

- Given a reward function R inducing an optimal policy π , which is the class of rewards preserving the optimality of π ?
- Optimality of π is preserved for *potential-based* shaping functions:

$$R'(s, a) = R(s, a) + \gamma \int_{\mathcal{S}} P(s'|s, a) \chi(s') ds' - \chi(s)$$

• A smart choice is $\chi(s) = V^{\pi}(s)$, so we get the advantage function:

$$R'(s,a) = Q^{\pi}(s,a) - V^{\pi}(s,a) = A^{\pi}(s,a).$$

• The advantage function allows running RL algorithms with smaller γ .

Multi-objective second-order criteria

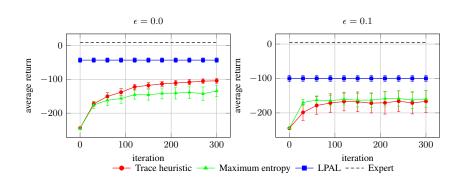
• Ideally we would like to minimize "all" the eigenvalues of the policy Hessian.

• We consider linear scalarizations:

$$L(\lambda(\omega), \gamma) = \sum_{i=1}^k \gamma_i \lambda_i(\omega) = \gamma^T \lambda(\omega).$$

- $\gamma_1 = 1$ and $\gamma_i = 0$ for i = 2, 3, ..., k we get maximum eigenvalue optimality criterion.
- $\gamma_i = 1$ for i = 1, 2, ..., k we get *trace* optimality criterion.

Taxi Comparison with PVF

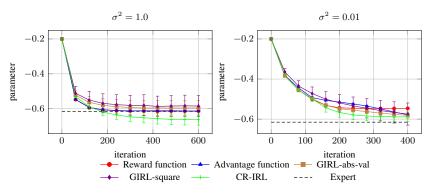


Linear Quadratic Gaussian Regulator (LQG) Preliminaries

- Continuous infinite-horizon problem.
- Gaussian (noisy) expert's policy, the mean is the optimal action.
- Variance to test resilience to imperfect experts.

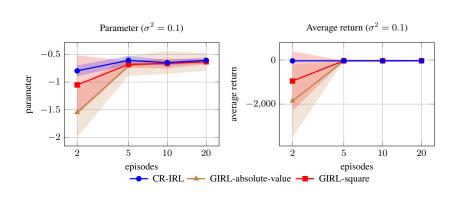
$\begin{array}{c} 1D\text{-}LQG \\ \text{Learning speed} \end{array}$

- Comparison with GIRL.
- Train a Gaussian policy with REINFORCE.

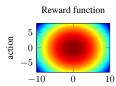


1D-LQG

Sensitivity to the number of expert's demonstrations

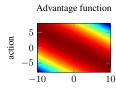


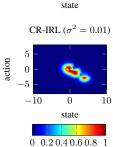
1D-LQG Recovered rewards

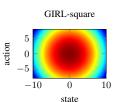


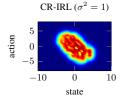
state

 $\begin{array}{c} \text{GIRL-abs-val} \\ \underset{\text{of } 0}{\text{to}} & 5 \\ 0 \\ -5 \\ -10 & 0 & 10 \\ \text{state} \end{array}$

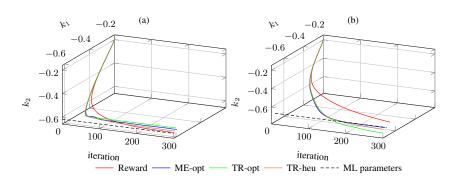




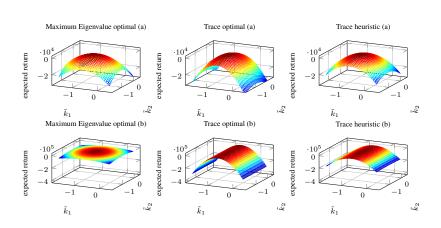




2D-LQG Learning speed



2D-LQG Shape of expected return



Car on the Hill Trajectories

