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Reinforcement Learning

AGENT

ENVIRONMENT

Action At

Reward Rt+1

State St+1

State St

‚ Markov Decision Process (MDP,
Puterman, 2014)

1 Observe the state St

2 Perform an action At „ πp¨|Stq

3 Transition to the next state
St`1 „ Pp¨|St ,Atq

4 Obtain reward
Rt`1 “ rpSt ,At , St`1q

‚ Goal: maximize the expected cumulative discounted reward (Sutton and Barto, 2018):

π˚ P arg max
πPΠSR

Jπ “ Eπ

«

ÿ

tPN
γtRt`1

ff
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AGENT

ENVIRONMENT

Action At

Reward Rt+1

State St+1

State St

What if some parts of the environment are configurable?
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AGENT
(policy π)

ENVIRONMENT
(configuration P )

Action At

Reward RConf,t+1

Reward RAg,t+1

State St+1

State St

What if some parts of the environment are configurable?
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F1 Driving

‚ Goal of the configuration:
‚ Find the configuration best suited for

the agent
‚ Present different configurations to

speed up learning

‚ Configuration carried out by agent or
external configurator

‚ Same goal for agent and configurator:
cooperative setting
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Teacher-Student

‚ Again cooperative setting

‚ Configuration activity aware of the
agent’s capabilities

‚ Side goal: infer the agent’s capabilities
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Supermarket

‚ Agent and configurator with different
goals: non-cooperative setting

‚ Different modes of interactions:
‚ Agent is aware of the configurator
‚ Agent is unaware of the configurator
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Outline of the Contributions

I - Modeling Environment Configurability

Configurable Markov Decision Process

(Metelli at al., 2018a, ICML)

Cooperative vs Non-Cooperative

(Ramponi at al., 2021a, AAAI workshop)

II - Learning in cooperative Conf-MDPs

Finite and known environments

(Metelli at al., 2018a, ICML)

Continuous and unknown environments

(Metelli et al., 2019a, ICML)

III - Applications of Conf-MDPs

Policy Space Identification

(Metelli et al. 2019b, under revision MLJ)

Control Frequency Adaptation

(Metelli et al., 2020, ICML)
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Part I - Modeling Environment Configurability
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Reinforcement Learning in Configurable Environments

AGENT
(policy π)

ENVIRONMENT
(configuration P )

Action At

Reward RConf,t+1

Reward RAg,t+1

State St+1

State St ‚ Configurable Markov Decision
Process (Conf-MDP)

1 Observe the state St

2 Perform an action At „ πp¨|Stq

3 Transition to the next state
St`1 „ Pp¨|St ,Atq

4 Agent obtains reward
Rt`1,Ag “ rAg pSt ,At , St`1q

5 Configurator obtains reward
Rt`1,Conf “ rConf pSt ,At , St`1q

‚ Expected cumulative discounted reward for agent and configurator:

Jπ,PAg “ Eπ,P

«

ÿ

tPN
γtRAg ,t`1

ff

Jπ,PConf “ Eπ,P

«

ÿ

tPN
γtRConf ,t`1

ff

Alberto Maria Metelli, Mirco Mutti, and Marcello Restelli. Configurable Markov Decision Processes. Proceedings of the 35th International Conference
on Machine Learning, ICML 2018.
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Cooperative and Non-Cooperative Settings

Cooperative Conf-MDP

rAg “ rConf “: r

Non-Cooperative Conf-MDP

rAg ‰ rConf

Alberto Maria Metelli, Mirco Mutti, and Marcello Restelli. Configurable
Markov Decision Processes. Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018.

Giorgia Ramponi, Alberto Maria Metelli, Alessandro Concetti, and Mar-
cello Restelli. Online Learning in Non-Cooperative Configurable Markov
Decision Process. AAAI-21 Workshop on Reinforcement Learning in
Games, 2021.
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Cooperative and Non-Cooperative Settings

Cooperative Conf-MDP

rAg “ rConf “: r

π˚,P˚ P arg max
πPΠ,PPP

Jπ,P

‚ Simple definition of optimality

‚ Π and P policy and configuration spaces

Non-Cooperative Conf-MDP

rAg ‰ rConf

P˚ P arg max
PPP

Jπ
BRpPq,P

Conf

πBRpPq P arg max
πPΠ

Jπ,PAg

‚ Equilibria as solution concepts (e.g.,
Stackelberg (Von Stackelberg, 1934))

‚ To be further studied...

Alberto Maria Metelli, Mirco Mutti, and Marcello Restelli. Configurable
Markov Decision Processes. Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018.

Giorgia Ramponi, Alberto Maria Metelli, Alessandro Concetti, and Mar-
cello Restelli. Online Learning in Non-Cooperative Configurable Markov
Decision Process. AAAI-21 Workshop on Reinforcement Learning in
Games, 2021.
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Considerations

‚ Configuration limited to a portion of the environment Ñ parametric setting

Pω P P

‚ Configuration happens less frequently than policy update and might be expensive (Silva
et al., 2018)

π˚,P˚ P arg max
πPΠ,PPP

Jπ,P ´ CostpPq

‚ Solving a cooperative Conf-MDP for general configuration space P is NP-Hard (Silva
et al., 2019)

Alberto Maria Metelli, Mirco Mutti, and Marcello Restelli. Configurable Markov Decision Processes. Proceedings of the 35th International Conference
on Machine Learning, ICML 2018.
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Part II - Learning in cooperative Conf-MDPs

I - Modeling Environment Configurability

Configurable Markov Decision Process

(Metelli at al., 2018a, ICML)

Cooperative vs Non-Cooperative

(Ramponi at al., 2021a, AAAI workshop)

II - Learning in cooperative Conf-MDPs

Finite and known environments

(Metelli at al., 2018a, ICML)

Continuous and unknown environments

(Metelli et al., 2019a, ICML)

III - Applications of Conf-MDPs

Policy Space Identification

(Metelli et al. 2019b, under revision MLJ)

Control Frequency Adaptation

(Metelli et al., 2020, ICML)
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Learning Algorithms for Cooperative Conf-MDPs

π˚,P˚ P arg max
πPΠ,PPP

Jπ,P

Safe Policy Model Iteration
(SPMI)

‚ Finite state-action spaces

‚ Known configuration space P
‚ Monotonic performance

improvement (Kakade and Langford, 2002)

Relative Entropy Model Policy Search
(REMPS)

‚ Trust-region method (Peters et al., 2010)

‚ Continuous state-action spaces

‚ Learned configuration space pP from data

Alberto Maria Metelli, Mirco Mutti, and Marcello Restelli. Configurable
Markov Decision Processes. Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018.

Alberto Maria Metelli, Emanuele Ghelfi, and Marcello Restelli. Rein-
forcement Learning in Configurable Continuous Environments. Proceed-
ings of the 36th International Conference on Machine Learning, ICML
2019.
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Learning to Configure Vehicle with TORCS

‚ Policy: acceleration, steer, brake (Wymann et al., 2000)
‚ Configurable Parameters

‚ rear wing angle
‚ front wing angle
‚ brake repartition

0 20 40
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80

100

Iteration

A
v
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a
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e
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rn

Conf No-Conf

Bot

Alberto Maria Metelli, Emanuele Ghelfi, and Marcello Restelli. Reinforcement Learning in Configurable Continuous Environments. Proceedings of the
36th International Conference on Machine Learning, ICML 2019.
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Part III - Applications of Conf-MDPs

I - Modeling Environment Configurability

Configurable Markov Decision Process

(Metelli at al., 2018a, ICML)

Cooperative vs Non-Cooperative

(Ramponi at al., 2021a, AAAI workshop)

II - Learning in cooperative Conf-MDPs

Finite and known environments

(Metelli at al., 2018a, ICML)

Continuous and unknown environments

(Metelli et al., 2019a, ICML)

III - Applications of Conf-MDPs

Policy Space Identification

(Metelli et al. 2019b, under revision MLJ)

Control Frequency Adaptation

(Metelli et al., 2020, ICML)
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Policy Space Identification

I - Modeling Environment Configurability

Configurable Markov Decision Process

(Metelli at al., 2018a, ICML)

Cooperative vs Non-Cooperative

(Ramponi at al., 2021a, AAAI workshop)

II - Learning in cooperative Conf-MDPs

Finite and known environments

(Metelli at al., 2018a, ICML)

Continuous and unknown environments

(Metelli et al., 2019a, ICML)

III - Applications of Conf-MDPs

Policy Space Identification

(Metelli et al. 2019b, under revision MLJ)

Control Frequency Adaptation

(Metelli et al., 2020, ICML)
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Motivations and Problem

‚ Problem: The configurator should know the perception and actuation capabilities of an
agent to select a suitable configuration

‚ Research Question: How to identify the policy space of an agent by observing its
behavior?

‚ Applications
‚ Configurable MDPs
‚ Imitation Learning (Osa et al., 2018)

s1

s2

s3

a1

a2

s1

s2

s3

a1

a2

s1

s2

s3

a1

a2

Alberto Maria Metelli, Guglielmo Manneschi, and Marcello Restelli. Policy Space Identification in Configurable Environments. CoRR, abs/1909.03984,
2019b.
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Policy Spaces and Correctness

‚ Agent policy Ñ πθ˚ P ΠΘ Ð Policy space

‚ Parameter space Θ Ă Rd

‚ The agent can change d˚ ă d parameters

‚ I Ď t1, . . . , du subset of indexes

ΘI “ tθ P Θ : θi “ 0,@i P t1, . . . , duzI u

‚ I˚ is correct for the agent’s policy πθ˚ iff

θ˚ P ΘI˚
loooomoooon

sufficient

^ @i P I˚ : θ˚ R ΘI˚ztiu
loooooooooooomoooooooooooon

necessary

Θ

Alberto Maria Metelli, Guglielmo Manneschi, and Marcello Restelli. Policy Space Identification in Configurable Environments. CoRR, abs/1909.03984,
2019b.
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Alberto Maria Metelli, Guglielmo Manneschi, and Marcello Restelli. Policy Space Identification in Configurable Environments. CoRR, abs/1909.03984,
2019b.
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Policy Spaces and Correctness

‚ Agent policy Ñ πθ˚ P ΠΘ Ð Policy space

‚ Parameter space Θ Ă Rd

‚ The agent can change d˚ ă d parameters

‚ I Ď t1, . . . , du subset of indexes

ΘI “ tθ P Θ : θi “ 0,@i P t1, . . . , duzI u

‚ I˚ is correct for the agent’s policy πθ˚ iff

θ˚ P ΘI˚
loooomoooon

sufficient
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Hypothesis Tests

‚ Idea: perform hypothesis test for I Ď t1, ..., du

H0,I : θ˚ P ΘI vs H1,I : θ˚ P ΘzΘI

‚ Dataset of samples tpSi ,Ai qu
n
i“1 collected with the agent’s policy πθ˚

‚ Likelihood of a parameter θ P Θ

pLpθq “
n
ź

i“1

πθpAi |Si q

‚ Generalized likelihood ratio statistic (Casella and Berger, 2002)

ΛI “
supθPΘI

pLpθq
supθPΘ

pLpθq
ΛI » 0 Ñ reject H0,I

ΛI » 1 Ñ do not reject H0,I

Alberto Maria Metelli, Guglielmo Manneschi, and Marcello Restelli. Policy Space Identification in Configurable Environments. CoRR, abs/1909.03984,
2019b.
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Identification Rules

‚ Identification Rule: retain all the approximately correct pI Ď t1, ..., du:

do not reject H0,pI
loooooooooomoooooooooon

sufficient

^ @i P pI : reject H0,pIztiu
loooooooooooomoooooooooooon

necessary

‚ Can be simplified under uniqueness of representation

‚ Theoretical guarantees on misidentification

Pr
´

pI ‰ I˚
¯

ď O
ˆ

d2 exp

ˆ

´
cpθ˚qn

16d2σ4

˙˙

Alberto Maria Metelli, Guglielmo Manneschi, and Marcello Restelli. Policy Space Identification in Configurable Environments. CoRR, abs/1909.03984,
2019b.
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Control Frequency Adaptation

I - Modeling Environment Configurability

Configurable Markov Decision Process

(Metelli at al., 2018a, ICML)

Cooperative vs Non-Cooperative

(Ramponi at al., 2021a, AAAI workshop)

II - Learning in cooperative Conf-MDPs

Finite and known environments

(Metelli at al., 2018a, ICML)

Continuous and unknown environments

(Metelli et al., 2019a, ICML)

III - Applications of Conf-MDPs

Policy Space Identification

(Metelli et al. 2019b, under revision MLJ)

Control Frequency Adaptation

(Metelli et al., 2020, ICML)
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Motivations and Problem

‚ Problem: The control frequency for a system is a
configurable environmental parameter.

‚ Applications
‚ Robot control (Kober et al., 2013)
‚ Finance, trading (Murphy et al., 2001)

Control opportunities Sample complexity

High frequency 3 7

Low frequency 7 3

‚ Research Question: Can we exploit this trade-off to
find an optimal control frequency?

Alberto Maria Metelli, Flavio Mazzolini, Lorenzo Bisi, Luca Sabbioni, and Marcello Restelli. Control Frequency Adaptation via Action Persistence in
Batch Reinforcement Learning. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020.
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Action Persistence

‚ Idea: persisting each action for k consecutive steps

‚

S0

t = 0

S1

t = 1

S2

t = 2

S3

t = 3

S4

t = 4

S5

t = 5

S6

t = 6

A0 ∼ π(·|S0) A1 ∼ π(·|S1) A2 ∼ π(·|S2) A3 ∼ π(·|S3) A4 ∼ π(·|S4) A5 ∼ π(·|S5)

Alberto Maria Metelli, Flavio Mazzolini, Lorenzo Bisi, Luca Sabbioni, and Marcello Restelli. Control Frequency Adaptation via Action Persistence in
Batch Reinforcement Learning. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020.
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‚ Idea: persisting each action for k consecutive steps

‚ No action persistence
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t = 6

A0 ∼ π(·|S0) A1 ∼ π(·|S1) A2 ∼ π(·|S2) A3 ∼ π(·|S3) A4 ∼ π(·|S4) A5 ∼ π(·|S5)

‚ Action persistence (k “ 3) Ñ policy view
‚ k-persistent policy (non-Markovian and non-stationary)

S0

t = 0

S1

t = 1

S2

t = 2

S3

t = 3

S4

t = 4

S5

t = 5

S6

t = 6

A0 ∼ π(·|S0) A0 A0 A3 ∼ π(·|S3) A3 A3

Alberto Maria Metelli, Flavio Mazzolini, Lorenzo Bisi, Luca Sabbioni, and Marcello Restelli. Control Frequency Adaptation via Action Persistence in
Batch Reinforcement Learning. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020.
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‚ Action persistence (k “ 3) Ñ environment view
‚ k-persistent MDP (Conf-MDP)

S0

t = 0

S1

t = 1

S2

t = 2

S3

t = 3

S4

t = 4

S5

t = 5

S6

t = 6

A0 ∼ π(·|S0) A3 ∼ π(·|S3)
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Control Opportunities

‚ Q˚k ď Q˚ for all k ě 1

‚ How much do we lose by persisting k times the actions?

}Q˚k ´ Q˚}p,µ ď
γ

1´ γ

1´ γk´1

1´ γk

›

›

›
W1pP

π˚ ,Pδq
›

›

›

p,µ

‚ Increasing with k
‚ W1pP

π˚ ,Pδq: Wasserstein distance
between transition kernels
‚ Can be bounded under Lipschitz

conditions (Rachelson and Lagoudakis,
2010)

Pπ
˚

ps 1, a1|s, aq “ pa1|s 1q Pps 1|s, aq

Pδps 1, a1|s, aq “ δa1paq Pps
1|s, aq

Alberto Maria Metelli, Flavio Mazzolini, Lorenzo Bisi, Luca Sabbioni, and Marcello Restelli. Control Frequency Adaptation via Action Persistence in
Batch Reinforcement Learning. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020.
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γ
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1
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−
γ
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›
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›

p,µ
ď LQ rpLπ˚ ` 1qLT ` σps
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Persistent Fitted Q-Iteration (PFQI)

Fitted Q-Iteration
(Ernst et al., 2005)

‚ Approximation space F
‚ Initial estimate Qp0q

‚ Dataset

D “ tpSi ,Ai ,Si`1,Ri qu
n
i“1 „ ν

Qpj`1q
“ ΠF pT ˚Qpjq

‚ Qpjq ù Q˚

‚ What about Q˚k ?

Empirical Bellman Operators

p pT˚f qpSi ,Ai q “ Ri ` γmax
aPA

f pSi`1, aq

p pT δf qpSi ,Ai q “ Ri ` γf pSi`1,Ai q

T ˚ » ΠF pT ˚

F Qpjq
Qpj`1q

pT˚

ΠF

pT˚

ΠF

Qpj`kq

pT˚

ΠF
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F Qpjq
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pT˚

ΠF

pTδ

ΠF

Qpj`kq

pTδ

ΠF
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p pT˚f qpSi ,Ai q “ Ri ` γmax
aPA

f pSi`1, aq

p pT δf qpSi ,Ai q “ Ri ` γf pSi`1,Ai q

T ˚k “ pT
δ
q
k´1T ˚ » pΠF pT δ

q
k´1ΠF pT ˚

F Qpjq
Qpj`1q

pT˚

ΠF

pTδ

ΠF

Qpj`kq

pTδ

ΠF
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Sample Complexity: Error Propagation
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Q˚k ´ QπpJq

k

›

›

›

p,µ
ď

2

1´ γ

γk

1´ γk CkpJ, µ, ν, pq EkpJ, µ, ν, pq

‚ Decreasing with k
‚ Concentrability coefficients

(Farahmand, 2011)

‚ Approximation errors Ñ
decreasing with number of
samples

Pπ
˚

ps 1, a1|s, aq “ pa1|s 1q Pps 1|s, aq

Pδps 1, a1|s, aq “ δa1paq Pps
1|s, aq
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Control Frequency Trade-Off

›

›

›
Q˚ ´ QπpJq

k

›

›

›

p,µ
ď }Q˚ ´ Q˚k }p,µ `

›

›

›
Q˚k ´ QπpJq

k

›

›

›

p,µ

‚ Control Opportunities

‚ Algorithm-independent

‚ Increasing with k

‚ Sample Complexity

‚ Algorithm-dependent

‚ Decreasing with k
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Forex Trading

‚ Task: USD traded with EUR

‚ Positions: Long, short, flat
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improve agent’s optimal performance
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Knowing the agent’s policy space
helps environment configuration

Adapting the control frequency can
improve the learning performance
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